def main(): X, Y = get_facialexpression(balance_ones=True) M = 2000 ann = AnnTheano(M) ann.fit(X, Y) print "score:", ann.score(X, Y)
def main(): X, Y = get_facialexpression(balance_ones=True) M = 200 ann = ANN(M) ann.fit(X, Y, show_figure=True) print ann.score(X, Y)
def main(): X, Y = get_facialexpression(balance_ones=True) X, Y = shuffle(X, Y) K = len(np.unique(Y)) #Split into train and test Ntrain = int(0.8 * len(Y)) Xtrain, Ytrain = X[:Ntrain, :], Y[:Ntrain] Xtest, Ytest = X[:Ntrain, :], Y[:Ntrain] M = 100 # create the neural network model = MLPClassifier(hidden_layer_sizes=(Ntrain, M), activation='logistic', learning_rate='constant', learning_rate_init=1e-7, verbose=True) #train ANN model.fit(Xtrain, Ytrain) # print the train and test accuracy train_accuracy = model.score(Xtrain, Ytrain) test_accuracy = model.score(Xtest, Ytest) print "train accuracy:", train_accuracy, "test accuracy:", test_accuracy
def main(): X, T = get_facialexpression(balance_ones=True) # X, T = np.shuffle(X,T) label_map = [ 'Anger', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral' ] # klass =3 error_rate=0.0 # klass =4 error_rate=0.0 # klass =5 error_rate=0.0 # klass =0 klass = 4 N, D = X.shape X = np.concatenate( (np.ones((N, 1)), X), axis=1, ) T = T.astype(np.int32) X = X.astype(np.float32) #Fix for forecasting on one image T = class1detect(T, detect=klass) D += 1 # params lr = 5e-7 max_iteration = 150 W = np.random.randn(D) / np.sqrt(D) cost = [] error = [] for i in xrange(max_iteration): Y = forward(W, X) cost.append(cross_entropy(T, Y)) error.append(error_rate(T, Y)) W += lr * X.T.dot(T - Y) if i % 5 == 0: print "i=%d\tcost=%.3f\terror=%.3f" % (i, cost[-1], error[-1]) if i % 5 == 0: print "i=%d\tcost=%.3f\terror=%.3f" % (i, cost[-1], error[-1]) print "Final weight:", W print T print np.round(Y) plt.title('logistic regression ' + label_map[klass]) plt.xlabel('iterations') plt.ylabel('cross entropy') plt.plot(cost) plt.show() plt.title('logistic regression ' + label_map[klass]) plt.xlabel('iterations') plt.ylabel('error rate') plt.plot(error) plt.show()
def main(): print 'Loading ...' X, Y = get_facialexpression(balance_ones=True) detect = 1 print 'detecting class', detect Y = class1detect(Y, detect) model = LogisticModel() model.fit(X, Y, epochs=5000, show_figure=True) model.score(X, Y)
def main(): print 'Loading ...' X, Y = get_facialexpression(balance_ones=True) label_map = [ 'Anger', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral' ] print Y.shape print Y # detect=1 # print 'detecting class', detect # Y = class1detect(Y, detect) model = LogisticModelK(label=label_map) model.fit(X, Y, epochs=200, show_figure=True) model.score(X, Y)
def main(): label_map = [ 'Anger', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral' ] X, Y = get_facialexpression(balance_ones=False) while True: for i in xrange(7): x, y = X[Y == i], Y[Y == i] N = len(x) j = np.random.choice(N) plt.imshow(x[j].reshape(48, 48), cmap='gray') # images have been flattened plt.title(label_map[y[j]]) plt.show() prompt = raw_input('Quit? Enter Y:\n') if prompt == 'Y': break
def main(): X, Y = get_facialexpression(balance_ones=True) M = 5000 ann = AnnTensorflow1(M) ann.fit(X, Y, learning_rate=10e-7, reg=10e-6, show_fig=True)
def main(): X, Y = get_facialexpression(balance_ones=True) ann = AnnTheano2([2000, 100, 500]) ann.fit(X, Y) print "score:", ann.score(X,Y)
def main(): X, Y = get_facialexpression(balance_ones=True) ann = AnnTensorflow2([2000, 1000, 500]) print type(ann) ann.fit(X, Y, show_figure=True)
def main(): X, Y = get_facialexpression(balance_ones=True) model = LogisticModelSoftmax() model.fit(X, Y, show_figure=True) print model.score(X, Y)