def model_fn(features, labels, mode, params): # Get global step global_step = tf.train.get_global_step() # Construct mtf graph + mesh from params graph = mtf.Graph() mesh_shape = mtf.convert_to_shape(params["mesh_shape"]) layout_rules = mtf.convert_to_layout_rules(params["layout"]) # Mesh setup if params["use_tpu"]: var_placer, mesh_impl = simd_mesh_setup(params, mesh_shape, layout_rules) else: var_placer = None gpu_ids = params["gpu_ids"] mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( mesh_shape, layout_rules, gpu_ids) # Trainable variable precision # Store to checkpoints in master type, train in slice type, compute in activation type if params["precision"] == "bfloat16": variable_dtype = mtf.VariableDType(master_dtype=tf.bfloat16, slice_dtype=tf.float32, activation_dtype=tf.bfloat16) else: variable_dtype = mtf.VariableDType(master_dtype=tf.float32, slice_dtype=tf.float32, activation_dtype=tf.float32) # Build mtf mesh object mesh = mtf.Mesh(graph, "my_mesh", var_placer) # Build mtf_features & seq length dict for getting number of microbatches # We need to pack inputs into a dict to pass into serialize_training_step features_dict = {"inputs": features, "labels": labels} sequence_length_dict = { "inputs": params["n_ctx"], "labels": params["n_ctx"] } params = add_mode_to_params(params, mode) batch_size = get_batch_size(params) batch_dim = mtf.Dimension("batch", batch_size) batch_dims = [batch_dim] feature_length = sequence_length_dict["inputs"] length_dim = mtf.Dimension("sequence", feature_length) mtf_features = {} for key, x in features_dict.items(): if x is not None: feature_shape = mtf.Shape(batch_dims + [length_dim]) if type(features_dict[key]) == dict: features_dict[key] = features_dict[key]["feature"] x = tf.cast(features_dict[key], tf.int32) x = tf.reshape(x, feature_shape.to_integer_list) mtf_features[key] = mtf.import_fully_replicated(mesh, x, feature_shape, name=key) # Instantiate dict for dimensions, bias, etc that can be calculated here once then passed into model other_features = {} memory_length_dim = mtf.Dimension("memory_length", length_dim.size) attn_bias = biasmask_attn_weights( mesh, length_dim, memory_length_dim, variable_dtype) if params["causal"] else None # Add attn_bias into mtf_features other_features["attn_bias"] = attn_bias # Define other Dimensions that we'll need inside the model embd_dim = mtf.Dimension("embd", params["n_embd"]) vocab_dim = mtf.Dimension("vocab", params["n_vocab"]) # We need this because gathering when both the args have the same dimension in them breaks things # This dim is specifically for the weights # This prevents the "Einsum has lhs dimension without corresponding rhs or output dimension." error embed_sequence_dim = mtf.Dimension("embed_sequence", params["n_ctx"]) other_features["embd_dim"] = embd_dim other_features["vocab_dim"] = vocab_dim other_features["embed_sequence_dim"] = embed_sequence_dim other_features["memory_length_dim"] = memory_length_dim if mode == tf.estimator.ModeKeys.PREDICT: # Set up the model for prediction inputs = mtf_features["inputs"] if params["remove_partial_sequences"] is None: params["remove_partial_sequences"] = False export = params.get("export", False) if not export: mtf_samples = sample_autoregressive( inputs, other_features=other_features, params=params, variable_dtype=variable_dtype, remove_partial_sequences=params["remove_partial_sequences"], stop_at_token=params["eos_id"], sampling_use_entmax=params['sampling_use_entmax']) else: with mtf.utils.outside_all_rewrites(): with tf.variable_scope('gpt2'): mtf_samples, loss, loss_batch = gpt2.model( mtf_features, other_features, params, mesh, variable_dtype=variable_dtype, context=None) mtf_samples = mtf.anonymize(mtf_samples) inputs = mtf.anonymize(inputs) lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True) inputs = lowering.export_to_tf_tensor(inputs) outputs = lowering.export_to_tf_tensor(mtf_samples) predictions = {"inputs": inputs, "outputs": outputs} def scaffold_fn(): return tf.train.Scaffold( local_init_op=tf.group( tf.train.Scaffold.default_local_init_op(), lowering.copy_masters_to_slices(), name="mtf_local_init_op"), ready_op=tf.concat([ tf.report_uninitialized_variables(), resources.report_uninitialized_resources() ], axis=0, name="mtf_ready_op")) return tpu_estimator.TPUEstimatorSpec( mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions, scaffold_fn=scaffold_fn, prediction_hooks=[mtf.MtfRestoreHook(lowering)]) # We're not predicting, so we better be training or evaluating assert (mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL) if mode == tf.estimator.ModeKeys.TRAIN: # Gets number of microbatches per batch for serialized training # if param tokens_per_mb_per_replica = None, this defaults to 1 and no microbatching is performed num_microbatches = int( mtf_transformer.utils.serialize_num_microbatches( batch_dim=batch_dim, sequence_length=sequence_length_dict, mesh_shape=mesh_shape, layout_rules=layout_rules, tokens_per_microbatch_per_replica=params[ "tokens_per_mb_per_replica"])) else: num_microbatches = 1 params[ "num_microbatches"] = num_microbatches # Add num microbatches to params if num_microbatches > 1: # For serialize_training_step we need to modify the model to output results in a dict def serialized_fn(mtf_features): if params["model"] == "GPT": with tf.variable_scope('gpt2'): logits, loss, loss_batch = gpt2.model( mtf_features, other_features, params, mesh, variable_dtype=variable_dtype) return { "logits": logits, "loss": loss, "loss_batch": loss_batch } else: raise Exception( f"'{params['model']}' is not a valid model - please select from [GPT]" ) # Serialize the training step - Gradients are accumulated locally and reduced once. var_grads, output_dict = mtf.serialize_training_step( mtf_features, serialized_fn, batch_dim, num_microbatches) loss = output_dict["loss"] loss_batch = output_dict["loss_batch"] logits = output_dict["logits"] else: # If we're not splitting into microbatches, return logits & loss as is if params["model"] == "GPT": with mtf.utils.outside_all_rewrites(): with tf.variable_scope('gpt2'): logits, loss, loss_batch = gpt2.model( mtf_features, other_features, params, mesh, variable_dtype=variable_dtype, context=None) else: raise Exception( f"'{params['model']}' is not a valid model - please select from [GPT]" ) # Auto layout generation if params["auto_layout"]: auto_layout(graph, mesh_shape, logits, loss) if params["auto_layout_and_mesh_shape"]: auto_layout_and_mesh_shape(graph, params["num_cores"], logits, loss) if mode == tf.estimator.ModeKeys.TRAIN: # In TRAIN mode, get optimizer if params["num_microbatches"] > 1: # If we are splitting the batch into microbatches, var grads are created in the serialize_training_step fn # So we pass them in here _, update_ops, var_grads = get_optimizer( mesh, loss, params, variable_dtype=variable_dtype, inp_var_grads=var_grads) else: # Otherwise, they are created in the get_optimizer fn, so we leave inp_var_grads blank _, update_ops, var_grads = get_optimizer( mesh, loss, params, variable_dtype=variable_dtype) # Log summaries to tensorboard mtf.scalar_summary("loss", loss) # Log gradients if in params if params["log_grads"] not in [None, False]: for g in var_grads: grad_norm = mtf.sqrt(mtf.reduce_sum(mtf.square(g))) mtf.scalar_summary("grads/norm" + g.name[:-2], grad_norm) else: # For now, we can only export fully-replicated tensors. # This has to be done before lowering or they will not be included in the graph mean_logits = mtf.reduce_mean(logits, reduced_dim=vocab_dim) max_logits = mtf.argmax(logits, vocab_dim) del logits fully_replicated_mean_logits = mtf.anonymize(mean_logits) fully_replicated_max_logits = mtf.anonymize(max_logits) fully_replicated_loss_batch = mtf.anonymize(loss_batch) # Gets & prints info about no. trainable vars in the model & dimension names get_graph_info(graph) # 'lowers' mtf tensors into a tf graph - this enables us to export results as tf tensors lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True) tf_loss = lowering.export_to_tf_tensor(loss) tf_loss = tf.cast(tf_loss, tf.float32) if mode == tf.estimator.ModeKeys.TRAIN: # Use our patched version until mtf updates theirs host_call = create_host_call(params['model_path']) mtf.utils.remove_summaries() # Creates train_op tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add( global_step, 1)) # Need to manually increment global_step tf.logging.info(f"tf_update_ops: {tf_update_ops}") train_op = tf.group(tf_update_ops) else: tf_mean_logits = lowering.export_to_tf_tensor( fully_replicated_mean_logits) tf_max_logits = lowering.export_to_tf_tensor( fully_replicated_max_logits) tf_loss_batch = tf.to_float( lowering.export_to_tf_tensor(fully_replicated_loss_batch)) with mtf.utils.outside_all_rewrites(): # Copy master variables to slices. Must be called first. restore_hook = mtf.MtfRestoreHook(lowering) if mode == tf.estimator.ModeKeys.TRAIN: # Set up the checkpoint server and return the TPUEstimatorSpec saver = tf.train.Saver(tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( params["model_path"], save_steps=params["steps_per_checkpoint"], saver=saver, listeners=[saver_listener]) return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=tf_loss, host_call=host_call, train_op=train_op, training_hooks=[restore_hook, saver_hook]) elif mode == tf.estimator.ModeKeys.EVAL: # Evaluation metrics def _perplexity(loss): perplexity = tf.exp(loss) return tf.metrics.mean(perplexity) def _bits_per_byte(loss): bpb = loss * (0.29335 / math.log(2)) return tf.metrics.mean(bpb) def _metric_fn(tf_mean_logits, tf_loss_batch): mean_logits = tf.metrics.mean(tf_mean_logits) loss = tf.reduce_mean(tf_loss_batch) perp = _perplexity(loss) bpb = _bits_per_byte(loss) return { "mean_logits": mean_logits, "perplexity": perp, "bits per byte": bpb } def _lambada_metric_fn(labels, tf_max_logits, tf_loss_batch): eos_token = params["eos_id"] answer_positions = tf.where( tf.math.not_equal(labels, eos_token)) correct_answers = tf.gather_nd( tf.math.equal(tf_max_logits, labels), answer_positions) accuracy = tf.metrics.mean(tf.cast(correct_answers, tf.float32)) # I guess tf_loss_batch has z_loss and maybe other stuff added to it # so maybe this should be calculated separately in the future answer_loss = tf.gather_nd(tf_loss_batch, answer_positions) log_perplexity = tf.metrics.mean(answer_loss) return { "lambada_acc": accuracy, "lambada_log_ppl": log_perplexity } eval_task = params["eval_task"] if eval_task == "lambada": eval_metrics = (_lambada_metric_fn, [labels, tf_max_logits, tf_loss_batch]) else: eval_metrics = (_metric_fn, [tf_mean_logits, tf_loss_batch]) return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, evaluation_hooks=[restore_hook], loss=tf_loss, eval_metrics=eval_metrics)
def __init__(self, graph, inplanes, outplanes): super(StageBlock, self).__init__() self.nodes, self.input_nodes, self.output_nodes = get_graph_info(graph) self.nodeop = nn.ModuleList() for node in self.nodes: self.nodeop.append(Node_OP(node, inplanes, outplanes))