Example #1
0
def plot_diagnostics(trans,
                     name='simulated',
                     outdir='./',
                     date_format='%Y%m%d',
                     obs_vol=None,
                     obs_oht=None,
                     obs_sf=None,
                     obs_fc=None):
    """ Plot volume and heat transport diagnostics against RAPID observations """

    # Create basename for output files
    dts = utils.get_ncdates(trans)
    basename = utils.get_savename(outdir, name, dts, date_format, suffix='_')

    # Plot data
    plot_streamfunctions(trans, basename=basename, name=name, obs=obs_sf)
    plot_streamfunction_hovmollers(trans,
                                   basename=basename,
                                   name=name,
                                   obs=obs_sf)
    plot_volume_components(trans,
                           basename=basename,
                           name=name,
                           obs_vol=obs_vol,
                           obs_fc=obs_fc)
    plot_rapid_heat_components(trans,
                               basename=basename,
                               name=name,
                               obs=obs_oht)
    plot_geometric_heat_components(trans,
                                   basename=basename,
                                   name=name,
                                   obs=obs_oht)
    plot_zonal_mean_temperature(trans,
                                basename=basename,
                                name=name,
                                obs=obs_oht)
    plot_transport_profile(trans, basename=basename, name=name, obs=obs_oht)
    plot_fc_transport_profile(trans, basename=basename, name=name, obs=obs_oht)
    plot_moc_vs_oht(trans,
                    basename=basename,
                    name=name,
                    obs_vol=obs_vol,
                    obs_oht=obs_oht)
    plot_vol_vs_heat_transports(trans,
                                basename=basename,
                                name=name,
                                obs_vol=obs_vol,
                                obs_oht=obs_oht)
Example #2
0
def plot_rapid_heat_components(trans, basename='', name='simulated', obs=None):
    """ Plot RAPID heat transport components """

    # Add model data to sub-axis
    fig = plt.figure(figsize=(8, 12))
    fig.add_subplot(2, 1, 1)

    dts = utils.get_ncdates(trans)
    q_sum = trans.variables['q_sum_rapid'][:]
    q_ek = trans.variables['q_ek'][:]
    q_fc = trans.variables['q_fc'][:]
    q_geoint = trans.variables['q_geoint'][:]
    q_eddy = trans.variables['q_eddy'][:]
    q_wbw = trans.variables['q_wbw'][:]

    q_sum_label = 'Total (%4.2f PW)' % (q_sum.mean())
    q_ek_label = 'Ekman (%4.2f PW)' % (q_ek.mean())
    q_fc_label = 'Florida current (%4.2f PW)' % (q_fc.mean())
    q_geoint_label = 'Geostrophic interior (%4.2f PW)' % (q_geoint.mean())
    q_wbw_label = 'WBW (%4.2f PW)' % (q_wbw.mean())
    q_eddy_label = 'Eddies (%4.2f PW)' % (q_eddy.mean())

    plt.plot(dts, q_sum, linewidth=4, color='k', label=q_sum_label)
    plt.plot(dts, q_ek, linewidth=4, color=c1, label=q_ek_label)
    plt.plot(dts, q_fc, linewidth=4, color=c2, label=q_fc_label)
    plt.plot(dts, q_wbw, linewidth=4, color=c3, label=q_wbw_label)
    plt.plot(dts, q_geoint, linewidth=4, color=c4, label=q_geoint_label)
    plt.plot(dts, q_eddy, linewidth=4, color='0.5', label=q_eddy_label)
    plt.xlabel('Date')
    plt.ylim([-4, 4])
    plt.ylabel('PW')
    plt.title('Heat transports relative to 0C at 26N in %s' % name)
    plt.legend(loc=8, fontsize=8, ncol=2)

    # Add observational data to sub-axis
    if obs is not None:
        fig.add_subplot(2, 1, 2)

        q_sum_obs_label = 'Total (%4.2f PW)' % (obs.q_sum.mean())
        q_ek_obs_label = 'Ekman (%4.2f PW)' % (obs.q_ek.mean())
        q_fc_obs_label = 'Florida current (%4.2f PW)' % (obs.q_fc.mean())
        q_geoint_obs_label = 'Geostrophic interior (%4.2f PW)' % (
            obs.q_geoint.mean())
        q_wbw_obs_label = 'WBW (%4.2f PW)' % (obs.q_wbw.mean())
        q_eddy_obs_label = 'Eddies (%4.2f PW)' % (obs.q_eddy.mean())

        plt.plot(obs.dates,
                 obs.q_sum,
                 linewidth=4,
                 color='k',
                 label=q_sum_obs_label)
        plt.plot(obs.dates,
                 obs.q_ek,
                 linewidth=4,
                 color=c1,
                 label=q_ek_obs_label)
        plt.plot(obs.dates,
                 obs.q_fc,
                 linewidth=4,
                 color=c2,
                 label=q_fc_obs_label)
        plt.plot(obs.dates,
                 obs.q_wbw,
                 linewidth=4,
                 color=c3,
                 label=q_wbw_obs_label)
        plt.plot(obs.dates,
                 obs.q_geoint,
                 linewidth=4,
                 color=c4,
                 label=q_geoint_obs_label)
        plt.plot(obs.dates,
                 obs.q_eddy,
                 linewidth=4,
                 color='0.5',
                 label=q_eddy_obs_label)

        plt.xlabel('Date')
        plt.ylim([-4, 4])
        plt.ylabel('PW')
        plt.title(
            'Heat transports relative to 0C at 26N in RAPID observations')
        plt.legend(loc=8, fontsize=8, ncol=2)

    # Save plot
    plt.tight_layout()
    savef = basename + 'heat_transports_rapid_decomposition_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #3
0
def plot_geometric_heat_components(trans,
                                   basename='',
                                   name='simulated',
                                   obs=None):
    """ Plot geometric heat transport components """

    # Add model data to sub-axis (model v)
    fig = plt.figure(figsize=(8, 12))
    fig.add_subplot(3, 1, 1)

    dts = utils.get_ncdates(trans)
    q_sum_model = trans.variables['q_sum_model'][:]
    q_gyre_model = trans.variables['q_gyre_model'][:]
    q_ot_model = trans.variables['q_ot_model'][:]
    q_net_model = trans.variables['q_net_model'][:]

    q_sum_model_label = 'Total  (%4.2f PW)' % (q_sum_model.mean())
    q_gyre_model_label = 'Gyre (%4.2f PW)' % (q_gyre_model.mean())
    q_ot_model_label = 'Overturning  (%4.2f PW)' % (q_ot_model.mean())
    q_net_model_label = 'Net (%4.2f PW)' % (q_net_model.mean())

    plt.plot(dts, q_sum_model, linewidth=4, color='k', label=q_sum_model_label)
    plt.plot(dts, q_ot_model, linewidth=4, color=c1, label=q_ot_model_label)
    plt.plot(dts,
             q_gyre_model,
             linewidth=4,
             color=c2,
             label=q_gyre_model_label)
    plt.plot(dts, q_net_model, linewidth=4, color=c3, label=q_net_model_label)

    plt.xlabel('Date')
    plt.ylim([-.5, 2.5])
    plt.ylabel('PW')
    plt.title('Heat transports at 26N in %s (model velocities)' % name)
    plt.legend(loc=8, fontsize=8, ncol=2)

    # Add model data to sub-axis (RAPID approx)
    fig.add_subplot(3, 1, 2)

    q_sum_rapid = trans.variables['q_sum_rapid'][:]
    q_gyre_rapid = trans.variables['q_gyre_rapid'][:]
    q_ot_rapid = trans.variables['q_ot_rapid'][:]
    q_net_rapid = trans.variables['q_net_rapid'][:]

    q_sum_rapid_label = 'Total (%4.2f PW)' % (q_sum_rapid.mean())
    q_gyre_rapid_label = 'Gyre (%4.2f PW)' % (q_gyre_rapid.mean())
    q_ot_rapid_label = 'Overturning (%4.2f PW)' % (q_ot_rapid.mean())
    q_net_rapid_label = 'Net (%4.2f PW)' % (q_net_rapid.mean())

    plt.plot(dts, q_sum_rapid, linewidth=4, color='k', label=q_sum_rapid_label)
    plt.plot(dts, q_ot_rapid, linewidth=4, color=c1, label=q_ot_rapid_label)
    plt.plot(dts,
             q_gyre_rapid,
             linewidth=4,
             color=c2,
             label=q_gyre_rapid_label)
    plt.plot(dts, q_net_rapid, linewidth=4, color=c3, label=q_net_rapid_label)

    plt.xlabel('Date')
    plt.ylim([-.5, 2.5])
    plt.ylabel('PW')
    plt.title('Heat transports at 26N in %s (RAPID approx)' % name)
    plt.legend(loc=8, fontsize=8, ncol=2)

    # Add optional observational data to sub-axis
    if obs is not None:
        fig.add_subplot(3, 1, 3)
        q_sum_obs_label = 'Total (%4.2f PW)' % (obs.q_sum.mean())
        q_gyre_obs_label = 'Gyre (%4.2f PW)' % (obs.q_gyre.mean())
        q_ot_obs_label = 'Overturning (%4.2f PW)' % (obs.q_ot.mean())

        plt.plot(obs.dates,
                 obs.q_sum,
                 linewidth=4,
                 color='k',
                 label=q_sum_obs_label)
        plt.plot(obs.dates,
                 obs.q_ot,
                 linewidth=4,
                 color=c1,
                 label=q_ot_obs_label)
        plt.plot(obs.dates,
                 obs.q_gyre,
                 linewidth=4,
                 color=c2,
                 label=q_gyre_obs_label)

        plt.xlabel('Date')
        plt.ylim([-.5, 2.5])
        plt.ylabel('PW')
        plt.title('Heat transports at 26N in RAPID observations')
        plt.legend(loc=8, fontsize=8, ncol=2)

    # Save plot
    plt.tight_layout()
    savef = basename + 'heat_transports_geometric_decomposition_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #4
0
def plot_streamfunction_hovmollers(trans,
                                   name='simulated',
                                   basename='',
                                   obs=None):
    """ Plot overturning stream function hovmoller diagrams"""

    # Extract variables from data objects
    dts = utils.get_ncdates(trans)
    z = trans.variables['depth'][:]
    sf_rapid = trans.variables['sf_rapid'][:]
    sf_model = trans.variables['sf_model'][:]

    # Set up figure
    fig = plt.figure(figsize=(8, 12))
    cmap = plt.cm.viridis
    levels = np.arange(15) * 2 - 4
    norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
    cmin, cmax = -5, 30

    # Add model data to axis
    fig.add_subplot(3, 1, 1)
    plt.pcolormesh(dts,
                   -z,
                   sf_model.transpose(),
                   vmin=cmin,
                   vmax=cmax,
                   cmap=cmap,
                   norm=norm)
    plt.colorbar(orientation='vertical')
    plt.title('Overturning streamfunction at 26N in %s (model velocities)' %
              name)
    plt.xlabel('Dates')
    plt.ylabel('Depth (m)')

    # Add model data to axis (RAPID approx)
    fig.add_subplot(3, 1, 2)
    plt.pcolormesh(dts,
                   -z,
                   sf_rapid.transpose(),
                   vmin=cmin,
                   vmax=cmax,
                   cmap=cmap,
                   norm=norm)
    plt.colorbar(orientation='vertical')
    plt.title('Overturning streamfunction at 26N in %s (RAPID approx)' % name)
    plt.xlabel('Dates')
    plt.ylabel('Depth (m)')

    # Add optional observed data to axis
    if obs is not None:
        fig.add_subplot(3, 1, 3)
        plt.pcolormesh(obs.dates,
                       -obs.z,
                       obs.sf.transpose(),
                       vmin=cmin,
                       vmax=cmax,
                       cmap=cmap,
                       norm=norm)
        plt.colorbar(orientation='vertical')
        plt.title('Overturning streamfunction at 26N from RAPID array')
        plt.xlabel('Dates')
        plt.ylabel('Depth (m)')

    # Save plot
    plt.tight_layout()
    savef = basename + 'overturning_streamfunction_at_26n_hovmoller.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #5
0
def plot_vol_vs_heat_transports(trans,
                                basename='',
                                name='simulated',
                                obs_vol=None,
                                obs_oht=None):
    """ Plot total overturning vs geometric heat transports """

    # Extract model variables from data objects
    dts = utils.get_ncdates(trans)
    fc = trans.variables['fc'][:]
    ek = trans.variables['ekman'][:]
    umo = trans.variables['umo'][:]
    q_ek = trans.variables['q_ek'][:]
    q_fc = trans.variables['q_fc'][:]
    q_mo = trans.variables['q_mo'][:]

    q_fc_lin, q_fc_label = linreg_vol_vs_oht(fc, q_fc)
    q_ek_lin, q_ek_label = linreg_vol_vs_oht(ek, q_ek)
    q_mo_lin, q_mo_label = linreg_vol_vs_oht(umo, q_mo)

    # Extract obs variables from data objects
    if (obs_vol is not None) and (obs_oht is not None):
        mindt, maxdt = utils.get_daterange(obs_vol.dates, obs_oht.dates)
        vol_ind = utils.get_dateind(obs_vol.dates, mindt, maxdt)
        oht_ind = utils.get_dateind(obs_oht.dates, mindt, maxdt)
        ek_obs = obs_vol.ekman[vol_ind]
        fc_obs = obs_vol.fc[vol_ind]
        umo_obs = obs_vol.umo[vol_ind]
        q_ek_obs = obs_oht.q_ek[oht_ind]
        q_fc_obs = obs_oht.q_fc[oht_ind]
        q_mo_obs = obs_oht.q_mo[oht_ind]

        q_fc_obs_lin, q_fc_obs_label = linreg_vol_vs_oht(fc_obs, q_fc_obs)
        q_ek_obs_lin, q_ek_obs_label = linreg_vol_vs_oht(ek_obs, q_ek_obs)
        q_mo_obs_lin, q_mo_obs_label = linreg_vol_vs_oht(umo_obs, q_mo_obs)

    # Plot ekman
    fig = plt.figure(figsize=(15, 5))
    fig.add_subplot(1, 3, 1)

    plt.plot(ek, q_ek, 'x', color=c1)
    plt.plot(ek, q_ek_lin, '-', color=c1, label='%s (%s)' % (name, q_ek_label))

    if (obs_vol is not None) and (obs_oht is not None):
        plt.plot(ek_obs, q_ek_obs, 'x', color='k')
        plt.plot(ek_obs,
                 q_ek_obs_lin,
                 '-',
                 color='k',
                 label='RAPID observations (%s)' % q_ek_obs_label)

    plt.xlabel('Volume transport (Sv)')
    plt.ylabel('Heat transport (PW)')
    plt.title('Ekman volume vs heat transport')
    plt.legend(loc='best', fontsize=8)

    # Plot florida current
    fig.add_subplot(1, 3, 2)

    plt.plot(fc, q_fc, 'x', color=c1)
    plt.plot(fc, q_fc_lin, '-', color=c1, label='%s (%s)' % (name, q_fc_label))

    if (obs_vol is not None) and (obs_oht is not None):
        plt.plot(fc_obs, q_fc_obs, 'x', color='k')
        plt.plot(fc_obs,
                 q_fc_obs_lin,
                 '-',
                 color='k',
                 label='RAPID observations (%s)' % q_fc_obs_label)

    plt.xlabel('Volume transport (Sv)')
    plt.ylabel('Heat transport (PW)')
    plt.title('Florida current volume vs heat transport')
    plt.legend(loc='best', fontsize=8)

    # Plot mid-ocean
    fig.add_subplot(1, 3, 3)

    plt.plot(umo, q_mo, 'x', color=c1)
    plt.plot(umo,
             q_mo_lin,
             '-',
             color=c1,
             label='%s (%s)' % (name, q_mo_label))

    if (obs_vol is not None) and (obs_oht is not None):
        plt.plot(umo_obs, q_mo_obs, 'x', color='k')
        plt.plot(umo_obs,
                 q_mo_obs_lin,
                 '-',
                 color='k',
                 label='RAPID observations (%s)' % q_mo_obs_label)

    plt.xlabel('Volume transport (Sv)')
    plt.ylabel('Heat transport (PW)')
    plt.title('Mid-ocean volume vs heat transport')
    plt.legend(loc='best', fontsize=8)

    # Save plot
    plt.tight_layout()
    savef = basename + 'volume_vs_heat_transports_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #6
0
def plot_moc_vs_oht(trans,
                    basename='',
                    name='simulated',
                    obs_vol=None,
                    obs_oht=None):
    """ Plot total overturning vs geometric heat transports """

    # Add model data to axis (model v)
    fig = plt.figure(figsize=(15, 5))
    fig.add_subplot(1, 3, 1)

    dts = utils.get_ncdates(trans)
    moc_model = trans.variables['moc_rapid'][:]
    q_sum_model = trans.variables['q_sum_model'][:]
    q_gyre_model = trans.variables['q_gyre_model'][:]
    q_ot_model = trans.variables['q_ot_model'][:]

    q_sum_model_lin, q_sum_model_label = linreg_vol_vs_oht(
        moc_model, q_sum_model)
    q_gyre_model_lin, q_gyre_model_label = linreg_vol_vs_oht(
        moc_model, q_gyre_model)
    q_ot_model_lin, q_ot_model_label = linreg_vol_vs_oht(moc_model, q_ot_model)

    plt.plot(moc_model, q_sum_model, 'x', color='k')
    plt.plot(moc_model,
             q_sum_model_lin,
             '-',
             color='k',
             label='total (%s)' % q_sum_model_label)
    plt.plot(moc_model, q_ot_model, 'x', color=c1)
    plt.plot(moc_model,
             q_ot_model_lin,
             '-',
             color=c1,
             label='overturning (%s)' % q_ot_model_label)
    plt.plot(moc_model, q_gyre_model, 'x', color=c2)
    plt.plot(moc_model,
             q_gyre_model_lin,
             '-',
             color=c2,
             label='gyre (%s)' % q_gyre_model_label)

    plt.xlabel('MOC (Sv)')
    plt.ylabel('Heat transport (PW)')
    plt.title('MOC vs OHT in %s (model velocities)' % name)
    plt.legend(
        loc='best',
        fontsize=8,
    )

    # Add model data to axis (RAPID approx)
    fig.add_subplot(1, 3, 2)

    moc_rapid = trans.variables['moc_rapid'][:]
    q_sum_rapid = trans.variables['q_sum_rapid'][:]
    q_gyre_rapid = trans.variables['q_gyre_rapid'][:]
    q_ot_rapid = trans.variables['q_ot_rapid'][:]

    q_sum_rapid_lin, q_sum_rapid_label = linreg_vol_vs_oht(
        moc_rapid, q_sum_rapid)
    q_gyre_rapid_lin, q_gyre_rapid_label = linreg_vol_vs_oht(
        moc_rapid, q_gyre_rapid)
    q_ot_rapid_lin, q_ot_rapid_label = linreg_vol_vs_oht(moc_rapid, q_ot_rapid)

    plt.plot(moc_rapid, q_sum_rapid, 'x', color='k')
    plt.plot(moc_rapid,
             q_sum_rapid_lin,
             '-',
             color='k',
             label='total (%s)' % q_sum_rapid_label)
    plt.plot(moc_rapid, q_ot_rapid, 'x', color=c1)
    plt.plot(moc_rapid,
             q_ot_rapid_lin,
             '-',
             color=c1,
             label='overturning (%s)' % q_ot_rapid_label)
    plt.plot(moc_rapid, q_gyre_rapid, 'x', color=c2)
    plt.plot(moc_rapid,
             q_gyre_rapid_lin,
             '-',
             color=c2,
             label='gyre (%s)' % q_gyre_rapid_label)

    plt.xlabel('MOC (Sv)')
    plt.ylabel('Heat transport (PW)')
    plt.title('MOC vs OHT in %s (RAPID approx)' % name)
    plt.legend(
        loc='best',
        fontsize=8,
    )

    # Add optional obs data to axis
    if (obs_oht is not None) and (obs_vol is not None):
        fig.add_subplot(1, 3, 3)

        mindt, maxdt = utils.get_daterange(obs_vol.dates, obs_oht.dates)
        vol_ind = utils.get_dateind(obs_vol.dates, mindt, maxdt)
        oht_ind = utils.get_dateind(obs_oht.dates, mindt, maxdt)
        q_sum_obs = obs_oht.q_sum[oht_ind]
        q_gyre_obs = obs_oht.q_gyre[oht_ind]
        q_ot_obs = obs_oht.q_ot[oht_ind]
        moc_obs = obs_vol.moc[vol_ind]

        q_sum_obs_lin, q_sum_obs_label = linreg_vol_vs_oht(moc_obs, q_sum_obs)
        q_gyre_obs_lin, q_gyre_obs_label = linreg_vol_vs_oht(
            moc_obs, q_gyre_obs)
        q_ot_obs_lin, q_ot_obs_label = linreg_vol_vs_oht(moc_obs, q_ot_obs)

        plt.plot(moc_obs, q_sum_obs, 'x', color='k')
        plt.plot(moc_obs,
                 q_sum_obs_lin,
                 '-',
                 color='k',
                 label='total (%s)' % q_sum_obs_label)
        plt.plot(moc_obs, q_ot_obs, 'x', color=c1)
        plt.plot(moc_obs,
                 q_ot_obs_lin,
                 '-',
                 color=c1,
                 label='overturning (%s)' % q_ot_obs_label)
        plt.plot(moc_obs, q_gyre_obs, 'x', color=c2)
        plt.plot(moc_obs,
                 q_gyre_obs_lin,
                 '-',
                 color=c2,
                 label='gyre (%s)' % q_gyre_obs_label)

        plt.xlabel('MOC (Sv)')
        plt.ylabel('Heat transport (PW)')
        plt.title('MOC vs OHT in RAPID observations')
        plt.legend(
            loc='best',
            fontsize=8,
        )

    # Save plot
    plt.tight_layout()
    savef = basename + 'moc_vs_heat_transports_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #7
0
def plot_volume_components(trans,
                           basename='',
                           name='simulated',
                           obs_vol=None,
                           obs_fc=None):
    """ Plot volume transport component time series """

    # Add model data to sub-axis
    fig = plt.figure(figsize=(8, 12))
    fig.add_subplot(2, 1, 1)

    dts = utils.get_ncdates(trans)
    fc = trans.variables['fc'][:]
    ekman = trans.variables['ekman'][:]
    umo = trans.variables['umo'][:]
    moc = trans.variables['moc_rapid'][:]

    fc_label = 'Florida current (%6.1f Sv)' % (fc.mean())
    ek_label = 'Ekman transport (%6.1f Sv)' % (ekman.mean())
    umo_label = 'Upper-mid ocean (%4.1f Sv)' % (umo.mean())
    moc_label = 'MOC (%6.1f Sv)' % (moc.mean())

    plt.plot(dts, fc, linewidth=4, color=c1, label=fc_label)
    plt.plot(dts, ekman, linewidth=4, color=c2, label=ek_label)
    plt.plot(dts, umo, linewidth=4, color=c3, label=umo_label)
    plt.plot(dts, moc, linewidth=4, color='k', label=moc_label)

    plt.xlabel('Date')
    plt.ylim([-50, 50])
    plt.ylabel('Sverdrups')
    plt.title('Overturning components at 26N in %s' % name)
    plt.legend(loc=8, fontsize=8, ncol=2)

    # Add optional observational data to sub-axis
    if (obs_vol is not None) or (obs_fc is not None):
        fig.add_subplot(2, 1, 2)

        if obs_vol is not None:
            fc_obs_label = 'Florida current (%6.1f Sv)' % (obs_vol.fc.mean())
            ek_obs_label = 'Ekman transport (%6.1f Sv)' % (
                obs_vol.ekman.mean())
            umo_obs_label = 'Upper-mid ocean (%4.1f Sv)' % (obs_vol.umo.mean())
            moc_obs_label = 'MOC (%6.1f Sv)' % (obs_vol.moc.mean())

            plt.plot(obs_vol.dates,
                     obs_vol.fc,
                     linewidth=4,
                     color=c1,
                     label=fc_obs_label)
            plt.plot(obs_vol.dates,
                     obs_vol.ekman,
                     linewidth=4,
                     color=c2,
                     label=ek_obs_label)
            plt.plot(obs_vol.dates,
                     obs_vol.umo,
                     linewidth=4,
                     color=c3,
                     label=umo_obs_label)
            plt.plot(obs_vol.dates,
                     obs_vol.moc,
                     linewidth=4,
                     color='k',
                     label=moc_obs_label)

        if obs_fc is not None:
            fc_obs_ext_label = 'FC - extended (%6.1f Sv)' % (obs_fc.fc.mean())
            plt.plot(obs_fc.dates,
                     obs_fc.fc,
                     linewidth=4,
                     color=c4,
                     label=fc_obs_ext_label)

        plt.xlabel('Date')
        plt.ylim([-50, 50])
        plt.ylabel('Sverdrups')
        plt.title('Overturning components at 26N in RAPID observations')
        plt.legend(loc=8, fontsize=8, ncol=2)

    # Save plot
    plt.tight_layout()
    savef = basename + 'volume_transport_components_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #8
0
def plot_moc_vs_oft(trans,
                    basename='',
                    name='simulated',
                    obs_vol=None,
                    obs_oft=None):
    """ Plot total overturning vs geometric freshwater transports """

    # Add model data to axis (model v)
    fig = plt.figure(figsize=(15, 5))
    fig.add_subplot(1, 3, 1)

    dts = utils.get_ncdates(trans)
    moc_model = trans.variables['moc_model'][:]
    fw_sum_model = trans.variables['fw_sum_model'][:]
    fw_gyre_model = trans.variables['fw_gyre_model'][:]
    fw_ot_model = trans.variables['fw_ot_model'][:]

    fw_sum_model_lin, fw_sum_model_label = linreg(moc_model,
                                                  fw_sum_model,
                                                  units='Sv/Sv')
    fw_gyre_model_lin, fw_gyre_model_label = linreg(moc_model,
                                                    fw_gyre_model,
                                                    units='Sv/Sv')
    fw_ot_model_lin, fw_ot_model_label = linreg(moc_model,
                                                fw_ot_model,
                                                units='Sv/Sv')

    plt.plot(moc_model,
             fw_sum_model,
             'x',
             color='k',
             label='total %s' % fw_sum_model_label)
    plt.plot(moc_model,
             fw_ot_model,
             'x',
             color=c1,
             label='overturning %s' % fw_ot_model_label)
    plt.plot(moc_model,
             fw_gyre_model,
             'x',
             color=c2,
             label='gyre %s' % fw_gyre_model_label)

    if fw_sum_model_lin is not None:
        plt.plot(moc_model, fw_sum_model_lin, '-', color='k')
        plt.plot(moc_model, fw_ot_model_lin, '-', color=c1)
        plt.plot(moc_model, fw_gyre_model_lin, '-', color=c2)

    plt.xlabel('MOC (Sv)')
    plt.ylabel('Equivalent freshwater transport (Sv)')
    plt.title('MOC vs FWT in %s (model velocities)' % name)
    plt.legend(
        loc='best',
        fontsize=8,
    )

    # Add model data to axis (RAPID approx)
    fig.add_subplot(1, 3, 2)

    moc_rapid = trans.variables['moc_rapid'][:]
    fw_sum_rapid = trans.variables['fw_sum_rapid'][:]
    fw_gyre_rapid = trans.variables['fw_gyre_rapid'][:]
    fw_ot_rapid = trans.variables['fw_ot_rapid'][:]

    fw_sum_rapid_lin, fw_sum_rapid_label = linreg(moc_rapid,
                                                  fw_sum_rapid,
                                                  units='Sv/Sv')
    fw_gyre_rapid_lin, fw_gyre_rapid_label = linreg(moc_rapid,
                                                    fw_gyre_rapid,
                                                    units='Sv/Sv')
    fw_ot_rapid_lin, fw_ot_rapid_label = linreg(moc_rapid,
                                                fw_ot_rapid,
                                                units='Sv/Sv')

    plt.plot(moc_rapid,
             fw_sum_rapid,
             'x',
             color='k',
             label='total %s' % fw_sum_rapid_label)
    plt.plot(moc_rapid,
             fw_ot_rapid,
             'x',
             color=c1,
             label='overturning %s' % fw_ot_rapid_label)
    plt.plot(moc_rapid,
             fw_gyre_rapid,
             'x',
             color=c2,
             label='gyre %s' % fw_gyre_rapid_label)

    if fw_sum_rapid_lin is not None:
        plt.plot(moc_rapid, fw_sum_rapid_lin, '-', color='k')
        plt.plot(moc_rapid, fw_ot_rapid_lin, '-', color=c1)
        plt.plot(moc_rapid, fw_gyre_rapid_lin, '-', color=c2)

    plt.xlabel('MOC (Sv)')
    plt.ylabel('Equivalent freshwater transport (Sv)')
    plt.title('MOC vs OFT in %s (RAPID approx)' % name)
    plt.legend(
        loc='best',
        fontsize=8,
    )

    # Add optional obs data to axis
    if (obs_oft is not None) and (obs_vol is not None):
        fig.add_subplot(1, 3, 3)

        mindt, maxdt = utils.get_daterange(obs_vol.dates, obs_oft.dates)
        vol_ind = utils.get_dateind(obs_vol.dates, mindt, maxdt)
        oft_ind = utils.get_dateind(obs_oft.dates, mindt, maxdt)
        fw_sum_obs = obs_oft.fw_sum[oft_ind]
        fw_gyre_obs = obs_oft.fw_gyre[oft_ind]
        fw_ot_obs = obs_oft.fw_ot[oft_ind]
        moc_obs = obs_vol.moc[vol_ind]

        fw_sum_obs_lin, fw_sum_obs_label = linreg(moc_obs,
                                                  fw_sum_obs,
                                                  units='Sv/Sv')
        fw_gyre_obs_lin, fw_gyre_obs_label = linreg(moc_obs,
                                                    fw_gyre_obs,
                                                    units='Sv/Sv')
        fw_ot_obs_lin, fw_ot_obs_label = linreg(moc_obs,
                                                fw_ot_obs,
                                                units='Sv/Sv')

        plt.plot(moc_obs,
                 fw_sum_obs,
                 'x',
                 color='k',
                 label='total %s' % fw_sum_obs_label)
        plt.plot(moc_obs,
                 fw_ot_obs,
                 'x',
                 color=c1,
                 label='overturning %s' % fw_ot_obs_label)
        plt.plot(moc_obs,
                 fw_gyre_obs,
                 'x',
                 color=c2,
                 label='gyre %s' % fw_gyre_obs_label)

        if fw_sum_obs_lin is not None:
            plt.plot(moc_obs, fw_sum_obs_lin, '-', color='k')
            plt.plot(moc_obs, fw_ot_obs_lin, '-', color=c1)
            plt.plot(moc_obs, fw_gyre_obs_lin, '-', color=c2)

        plt.xlabel('MOC (Sv)')
        plt.ylabel('Equivalent freshwater transport (Sv)')
        plt.title('MOC vs OFT in RAPID observations')
        plt.legend(
            loc='best',
            fontsize=8,
        )

    # Save plot
    plt.tight_layout()
    savef = basename + 'moc_vs_freshwater_transports_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()
Example #9
0
def plot_vol_vs_fw_transports(trans,
                              basename='',
                              name='simulated',
                              obs_vol=None,
                              obs_oft=None):
    """ Plot volume vs freshwater transport for RAPID components  """

    # Extract model variables from data objects
    dts = utils.get_ncdates(trans)
    fc = trans.variables['fc'][:]
    ek = trans.variables['ekman'][:]
    umo = trans.variables['umo'][:]
    fw_ek = trans.variables['fw_ek'][:]
    fw_fc = trans.variables['fw_fc'][:]
    fw_mo = trans.variables['fw_mo'][:]

    fw_fc_lin, fw_fc_label = linreg(fc, fw_fc, units='Sv/Sv')
    fw_ek_lin, fw_ek_label = linreg(ek, fw_ek, units='Sv/Sv')
    fw_mo_lin, fw_mo_label = linreg(umo, fw_mo, units='Sv/Sv')

    # Extract obs variables from data objects
    if (obs_vol is not None) and (obs_oft is not None):
        mindt, maxdt = utils.get_daterange(obs_vol.dates, obs_oft.dates)
        vol_ind = utils.get_dateind(obs_vol.dates, mindt, maxdt)
        oft_ind = utils.get_dateind(obs_oft.dates, mindt, maxdt)
        ek_obs = obs_vol.ekman[vol_ind]
        fc_obs = obs_vol.fc[vol_ind]
        umo_obs = obs_vol.umo[vol_ind]
        fw_ek_obs = obs_oft.fw_ek[oft_ind]
        fw_fc_obs = obs_oft.fw_fc[oft_ind]
        fw_mo_obs = obs_oft.fw_mo[oft_ind]

        fw_fc_obs_lin, fw_fc_obs_label = linreg(fc_obs,
                                                fw_fc_obs,
                                                units='Sv/Sv')
        fw_ek_obs_lin, fw_ek_obs_label = linreg(ek_obs,
                                                fw_ek_obs,
                                                units='Sv/Sv')
        fw_mo_obs_lin, fw_mo_obs_label = linreg(umo_obs,
                                                fw_mo_obs,
                                                units='Sv/Sv')

    # Plot ekman
    fig = plt.figure(figsize=(15, 5))
    fig.add_subplot(1, 3, 1)

    plt.plot(ek, fw_ek, 'x', color=c1, label='%s %s' % (name, fw_ek_label))
    if fw_ek_lin is not None:
        plt.plot(ek, fw_ek_lin, '-', color=c1)

    if (obs_vol is not None) and (obs_oft is not None):
        plt.plot(ek_obs,
                 fw_ek_obs,
                 'x',
                 color='k',
                 label='RAPID observations %s' % fw_ek_obs_label)
        if fw_ek_obs_lin is not None:
            plt.plot(ek_obs, fw_ek_obs_lin, '-', color='k')

    plt.xlabel('Volume transport (Sv)')
    plt.ylabel('Equivalent freshwater transport (Sv)')
    plt.title('Ekman volume vs freshwater transport')
    plt.legend(loc='best', fontsize=8)

    # Plot florida current
    fig.add_subplot(1, 3, 2)

    plt.plot(fc, fw_fc, 'x', color=c1, label='%s %s' % (name, fw_fc_label))
    if fw_fc_lin is not None:
        plt.plot(fc, fw_fc_lin, '-', color=c1)

    if (obs_vol is not None) and (obs_oft is not None):
        plt.plot(fc_obs,
                 fw_fc_obs,
                 'x',
                 color='k',
                 label='RAPID observations %s' % fw_fc_obs_label)
        if fw_fc_obs_lin is not None:
            plt.plot(fc_obs, fw_fc_obs_lin, '-', color='k')

    plt.xlabel('Volume transport (Sv)')
    plt.ylabel('Equivalent freshwater transport (Sv)')
    plt.title('Florida Current volume vs freshwater transport')
    plt.legend(loc='best', fontsize=8)

    # Plot mid-ocean
    fig.add_subplot(1, 3, 3)

    plt.plot(umo, fw_mo, 'x', color=c1, label='%s %s' % (name, fw_mo_label))
    if fw_mo_lin is not None:
        plt.plot(umo, fw_mo_lin, '-', color=c1)

    if (obs_vol is not None) and (obs_oft is not None):
        plt.plot(umo_obs,
                 fw_mo_obs,
                 'x',
                 color='k',
                 label='RAPID observations %s' % fw_mo_obs_label)
        if fw_mo_obs_lin is not None:
            plt.plot(umo_obs, fw_mo_obs_lin, '-', color='k')

    plt.xlabel('Volume transport (Sv)')
    plt.ylabel('Equivalent freshwater transport (Sv)')
    plt.title('Mid-ocean volume vs freshwater transport')
    plt.legend(loc='best', fontsize=8)

    # Save plot
    plt.tight_layout()
    savef = basename + 'volume_vs_freshwater_transports_at_26n.png'
    print 'SAVING: %s' % savef
    fig.savefig(savef, resolution=300)
    plt.close()