def prove_low_degree(values, root_of_unity, maxdeg_plus_1, modulus, exclude_multiples_of=0): f = PrimeField(modulus) print('Proving %d values are degree <= %d' % (len(values), maxdeg_plus_1)) # If the degree we are checking for is less than or equal to 32, # use the polynomial directly as a proof if maxdeg_plus_1 <= 16: print('Produced FRI proof') return [[x.to_bytes(32, 'big') for x in values]] # Calculate the set of x coordinates xs = get_power_cycle(root_of_unity, modulus) assert len(values) == len(xs) # Put the values into a Merkle tree. This is the root that the # proof will be checked against m = merkelize(values) # Select a pseudo-random x coordinate special_x = int.from_bytes(m[1], 'big') % modulus # Calculate the "column" at that x coordinate # (see https://vitalik.ca/general/2017/11/22/starks_part_2.html) # We calculate the column by Lagrange-interpolating each row, and not # directly from the polynomial, as this is more efficient quarter_len = len(xs) // 4 x_polys = f.multi_interp_4( [[xs[i + quarter_len * j] for j in range(4)] for i in range(quarter_len)], [[values[i + quarter_len * j] for j in range(4)] for i in range(quarter_len)]) column = [f.eval_quartic(p, special_x) for p in x_polys] m2 = merkelize(column) # Pseudo-randomly select y indices to sample ys = get_pseudorandom_indices(m2[1], len(column), 40, exclude_multiples_of=exclude_multiples_of) # Compute the Merkle branches for the values in the polynomial and the column branches = [] for y in ys: branches.append( [mk_branch(m2, y)] + [mk_branch(m, y + (len(xs) // 4) * j) for j in range(4)]) # This component of the proof o = [m2[1], branches] # Recurse... return [o] + prove_low_degree(column, f.exp(root_of_unity, 4), maxdeg_plus_1 // 4, modulus, exclude_multiples_of=exclude_multiples_of)
def verify_mimc_proof(inp, steps, round_constants, output, proof): p_root, d_root, b_root, l_root, branches, fri_proof = proof start_time = time.time() assert steps <= 2**32 // extension_factor assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants)) assert len(round_constants) < steps precision = steps * extension_factor # Get (steps)th root of unity G2 = f.exp(7, (modulus-1)//precision) skips = precision // steps # Gets the polynomial representing the round constants skips2 = steps // len(round_constants) constants_mini_polynomial = fft(round_constants, modulus, f.exp(G2, extension_factor * skips2), inv=True) # Verifies the low-degree proofs assert verify_low_degree_proof(l_root, G2, fri_proof, steps * 2, modulus, exclude_multiples_of=extension_factor) # Performs the spot checks k1 = int.from_bytes(blake(p_root + d_root + b_root + b'\x01'), 'big') k2 = int.from_bytes(blake(p_root + d_root + b_root + b'\x02'), 'big') k3 = int.from_bytes(blake(p_root + d_root + b_root + b'\x03'), 'big') k4 = int.from_bytes(blake(p_root + d_root + b_root + b'\x04'), 'big') samples = spot_check_security_factor positions = get_pseudorandom_indices(l_root, precision, samples, exclude_multiples_of=extension_factor) last_step_position = f.exp(G2, (steps - 1) * skips) for i, pos in enumerate(positions): x = f.exp(G2, pos) x_to_the_steps = f.exp(x, steps) p_of_x = verify_branch(p_root, pos, branches[i*5]) p_of_g1x = verify_branch(p_root, (pos+skips)%precision, branches[i*5 + 1]) d_of_x = verify_branch(d_root, pos, branches[i*5 + 2]) b_of_x = verify_branch(b_root, pos, branches[i*5 + 3]) l_of_x = verify_branch(l_root, pos, branches[i*5 + 4]) zvalue = f.div(f.exp(x, steps) - 1, x - last_step_position) k_of_x = f.eval_poly_at(constants_mini_polynomial, f.exp(x, skips2)) # Check transition constraints C(P(x)) = Z(x) * D(x) assert (p_of_g1x - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0 # Check boundary constraints B(x) * Q(x) + I(x) = P(x) interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output]) zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1]) assert (p_of_x - b_of_x * f.eval_poly_at(zeropoly2, x) - f.eval_poly_at(interpolant, x)) % modulus == 0 # Check correctness of the linear combination assert (l_of_x - d_of_x - k1 * p_of_x - k2 * p_of_x * x_to_the_steps - k3 * b_of_x - k4 * b_of_x * x_to_the_steps) % modulus == 0 print('Verified %d consistency checks' % spot_check_security_factor) print('Verified STARK in %.4f sec' % (time.time() - start_time)) return True
def verify_low_degree_proof(merkle_root, root_of_unity, proof, maxdeg_plus_1, modulus, exclude_multiples_of=0): f = PrimeField(modulus) # Calculate which root of unity we're working with testval = root_of_unity roudeg = 1 while testval != 1: roudeg *= 2 testval = (testval * testval) % modulus # Powers of the given root of unity 1, p, p**2, p**3 such that p**4 = 1 quartic_roots_of_unity = [1, f.exp(root_of_unity, roudeg // 4), f.exp(root_of_unity, roudeg // 2), f.exp(root_of_unity, roudeg * 3 // 4)] # Verify the recursive components of the proof for prf in proof[:-1]: root2, branches = prf print('Verifying degree <= %d' % maxdeg_plus_1) # Calculate the pseudo-random x coordinate special_x = int.from_bytes(merkle_root, 'big') % modulus # Calculate the pseudo-randomly sampled y indices ys = get_pseudorandom_indices(root2, roudeg // 4, 40, exclude_multiples_of=exclude_multiples_of) # For each y coordinate, get the x coordinates on the row, the values on # the row, and the value at that y from the column xcoords = [] rows = [] columnvals = [] for i, y in enumerate(ys): # The x coordinates from the polynomial x1 = f.exp(root_of_unity, y) xcoords.append([(quartic_roots_of_unity[j] * x1) % modulus for j in range(4)]) # The values from the original polynomial row = [verify_branch(merkle_root, y + (roudeg // 4) * j, prf) for j, prf in zip(range(4), branches[i][1:])] rows.append(row) columnvals.append(verify_branch(root2, y, branches[i][0])) # Verify for each selected y coordinate that the four points from the # polynomial and the one point from the column that are on that y # coordinate are on the same deg < 4 polynomial polys = f.multi_interp_4(xcoords, rows) for p, c in zip(polys, columnvals): assert f.eval_quartic(p, special_x) == c # Update constants to check the next proof merkle_root = root2 root_of_unity = f.exp(root_of_unity, 4) maxdeg_plus_1 //= 4 roudeg //= 4 # Verify the direct components of the proof data = [int.from_bytes(x, 'big') for x in proof[-1]] print('Verifying degree <= %d' % maxdeg_plus_1) assert maxdeg_plus_1 <= 16 # Check the Merkle root matches up mtree = merkelize(data) assert mtree[1] == merkle_root # Check the degree of the data powers = get_power_cycle(root_of_unity, modulus) if exclude_multiples_of: pts = [x for x in range(len(data)) if x % exclude_multiples_of] else: pts = range(len(data)) poly = f.lagrange_interp([powers[x] for x in pts[:maxdeg_plus_1]], [data[x] for x in pts[:maxdeg_plus_1]]) for x in pts[maxdeg_plus_1:]: assert f.eval_poly_at(poly, powers[x]) == data[x] print('FRI proof verified') return True
def mk_mimc_proof(inp, steps, round_constants): start_time = time.time() # Some constraints to make our job easier assert steps <= 2**32 // extension_factor assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants)) assert len(round_constants) < steps precision = steps * extension_factor # Root of unity such that x^precision=1 G2 = f.exp(7, (modulus-1)//precision) # Root of unity such that x^steps=1 skips = precision // steps G1 = f.exp(G2, skips) # Powers of the higher-order root of unity xs = get_power_cycle(G2, modulus) last_step_position = xs[(steps-1)*extension_factor] # Generate the computational trace computational_trace = [inp] for i in range(steps-1): computational_trace.append( (computational_trace[-1]**3 + round_constants[i % len(round_constants)]) % modulus ) output = computational_trace[-1] print('Done generating computational trace') # Interpolate the computational trace into a polynomial P, with each step # along a successive power of G1 computational_trace_polynomial = fft(computational_trace, modulus, G1, inv=True) p_evaluations = fft(computational_trace_polynomial, modulus, G2) print('Converted computational steps into a polynomial and low-degree extended it') skips2 = steps // len(round_constants) constants_mini_polynomial = fft(round_constants, modulus, f.exp(G1, skips2), inv=True) constants_polynomial = [0 if i % skips2 else constants_mini_polynomial[i//skips2] for i in range(steps)] constants_mini_extension = fft(constants_mini_polynomial, modulus, f.exp(G2, skips2)) print('Converted round constants into a polynomial and low-degree extended it') # Create the composed polynomial such that # C(P(x), P(g1*x), K(x)) = P(g1*x) - P(x)**3 - K(x) c_of_p_evaluations = [(p_evaluations[(i+extension_factor)%precision] - f.exp(p_evaluations[i], 3) - constants_mini_extension[i % len(constants_mini_extension)]) % modulus for i in range(precision)] print('Computed C(P, K) polynomial') # Compute D(x) = C(P(x), P(g1*x), K(x)) / Z(x) # Z(x) = (x^steps - 1) / (x - x_atlast_step) z_num_evaluations = [xs[(i * steps) % precision] - 1 for i in range(precision)] z_num_inv = f.multi_inv(z_num_evaluations) z_den_evaluations = [xs[i] - last_step_position for i in range(precision)] d_evaluations = [cp * zd * zni % modulus for cp, zd, zni in zip(c_of_p_evaluations, z_den_evaluations, z_num_inv)] print('Computed D polynomial') # Compute interpolant of ((1, input), (x_atlast_step, output)) interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output]) i_evaluations = [f.eval_poly_at(interpolant, x) for x in xs] zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1]) inv_z2_evaluations = f.multi_inv([f.eval_poly_at(zeropoly2, x) for x in xs]) b_evaluations = [((p - i) * invq) % modulus for p, i, invq in zip(p_evaluations, i_evaluations, inv_z2_evaluations)] print('Computed B polynomial') # Compute their Merkle root mtree = merkelize([pval.to_bytes(32, 'big') + dval.to_bytes(32, 'big') + bval.to_bytes(32, 'big') for pval, dval, bval in zip(p_evaluations, d_evaluations, b_evaluations)]) print('Computed hash root') # Based on the hashes of P, D and B, we select a random linear combination # of P * x^steps, P, B * x^steps, B and D, and prove the low-degreeness of that, # instead of proving the low-degreeness of P, B and D separately k1 = int.from_bytes(blake(mtree[1] + b'\x01'), 'big') k2 = int.from_bytes(blake(mtree[1] + b'\x02'), 'big') k3 = int.from_bytes(blake(mtree[1] + b'\x03'), 'big') k4 = int.from_bytes(blake(mtree[1] + b'\x04'), 'big') # Compute the linear combination. We don't even both calculating it in # coefficient form; we just compute the evaluations G2_to_the_steps = f.exp(G2, steps) powers = [1] for i in range(1, precision): powers.append(powers[-1] * G2_to_the_steps % modulus) l_evaluations = [(d_evaluations[i] + p_evaluations[i] * k1 + p_evaluations[i] * k2 * powers[i] + b_evaluations[i] * k3 + b_evaluations[i] * powers[i] * k4) % modulus for i in range(precision)] l_mtree = merkelize(l_evaluations) print('Computed random linear combination') # Do some spot checks of the Merkle tree at pseudo-random coordinates, excluding # multiples of `extension_factor` branches = [] samples = spot_check_security_factor positions = get_pseudorandom_indices(l_mtree[1], precision, samples, exclude_multiples_of=extension_factor) augmented_positions = sum([[x, (x + skips) % precision] for x in positions], []) #for pos in positions: # branches.append(mk_branch(mtree, pos)) # branches.append(mk_branch(mtree, (pos + skips) % precision)) # branches.append(mk_branch(l_mtree, pos)) print('Computed %d spot checks' % samples) # Return the Merkle roots of P and D, the spot check Merkle proofs, # and low-degree proofs of P and D o = [mtree[1], l_mtree[1], mk_multi_branch(mtree, augmented_positions), mk_multi_branch(l_mtree, positions), prove_low_degree(l_evaluations, G2, steps * 2, modulus, exclude_multiples_of=extension_factor)] print("STARK computed in %.4f sec" % (time.time() - start_time)) return o