Example #1
0
    '''
    ct = 0
    for i in data:
        ct += len(i[0].phrase.split()) + len(i[1].phrase.split())
    data = []
    print ct
    idx = 0
    ct2 = 0
    while ct > 0:
        dd = d[idx]
        data.append(dd)
        v = len(dd[0].phrase.split()) + len(dd[1].phrase.split())
        ct -= v
        ct2 += v
        idx += 1
    print ct2
    '''
if params.wordfile:
    (words, We) = utils.get_wordmap(params.wordfile)

model = models(We, params)

if params.loadmodel:
    base_params = cPickle.load(open(params.loadmodel, 'rb'))
    lasagne.layers.set_all_param_values(model.final_layer, base_params)

print " ".join(sys.argv)
print "Num examples:", len(data)

model.train(data, words, params)
Example #2
0
        if params.combination_type == "ngram-word":
            model = mixed_models(saved_params[0], saved_params[1], params)
        elif params.combination_type == "ngram-word-lstm":
            model = mixed_models(saved_params[0],
                                 saved_params[1],
                                 params,
                                 We_initial_lstm=saved_params[2])

        lasagne.layers.set_all_param_values(model.final_layer, saved_params)
    else:
        words_3grams, We_3gram = utils.get_ngrams(data, params)
        if params.random_embs:
            words_words, We_word = utils.get_words(data, params)
        else:
            words_words, We_word = utils.get_wordmap(args.wordfile)

        We_lstm = copy.deepcopy(We_word)

        if params.combination_type == "ngram-word":
            model = mixed_models(We_3gram, We_word, params)
        elif params.combination_type == "ngram-lstm":
            model = mixed_models(We_3gram,
                                 None,
                                 params,
                                 We_initial_lstm=We_lstm)
        elif params.combination_type == "word-lstm":
            model = mixed_models(None,
                                 We_word,
                                 params,
                                 We_initial_lstm=We_lstm)