Example #1
0
def run_NAS_EA_FA_V2():
    best_valid_acc, best_test_acc, times = NAS_EA_FA_V2()
    valid_acc, test_acc = handle_result(best_valid_acc, best_test_acc, times,
                                        MAX_TIME_BUDGET, INTERVAL)

    return valid_acc, test_acc
def run_regularized_evolution_algorithm(dataset: str):
    best_valid_acc, best_test_acc, times = regularized_evolution_algorithm(
        dataset)
    valid_acc, test_acc = handle_result(best_valid_acc, best_test_acc, times,
                                        MAX_TIME_BUDGET, INTERVAL)
    return valid_acc, test_acc
def run_random_search(dataset: str):
    best_valid_acc, best_test_acc, times = random_search(dataset)
    valid_acc, test_acc = handle_result(best_valid_acc, best_test_acc, times, MAX_TIME_BUDGET, INTERVAL)
    return valid_acc, test_acc
def run_neural_predictor():
    best_valid_acc, best_test_acc, times = neural_predictor()
    valid_acc, test_acc = handle_result(best_valid_acc, best_test_acc, times,
                                        MAX_TIME_BUDGET, INTERVAL)

    return valid_acc, test_acc
Example #5
0
    coco_names = load_classnames('datasets/coco.names')

    num_channels = 3

    image_filenames = [r"coco-cat-test.jpg"]

    raw_images = [None] * len(image_filenames)
    batch = torch.empty(
        (len(image_filenames), num_channels, input_width, input_height),
        dtype=torch.float32)

    for b, image_fn in enumerate(image_filenames):
        batch[b, :], raw_images[b] = load_image(image_fn,
                                                (input_height, input_width))

    batch = batch.to(device)
    with torch.no_grad():
        # # This is a hack for the fact that the ops inside the nested sequentials
        # # seem to be missing the no_grad context
        # model.disable_grad()
        predictions = model(batch)

    palette = pkl.load(open("palette", "rb"))

    batch_predictions = handle_result(predictions, 0.5, 0.4)
    print_predictions(image_filenames, coco_names, batch_predictions)
    plot_predictions(raw_images, coco_names, batch_predictions, palette)

    print(builder)