Example #1
0
def LPIPS_cal(dataset_teacher, number_classes, image_dir, output_file, device):
    print("Calculate LPIPS value...")
    all_pairs_lpips = False
    model = perceptual_models.PerceptualLoss(model='net-lin', net='alex', use_gpu=use_gpu, version=0.1)
    dists_among_fake_imgs = []
    for i in range(number_classes):
        files = os.listdir(image_dir + dataset_teacher + '/fake_images/' + str(i))
        num = len(files)-1
        if num > 10:
            num = 10
        for (ff, file0) in enumerate(files[0:num]):  # [:-1]):
            img0 = im2tensor(
                load_image(os.path.join(image_dir + dataset_teacher + '/fake_images/' + str(i), file0))).to(device)  # RGB image from [-1,1]
            if (all_pairs_lpips):
                files1 = files[ff + 1:]
            else:
                files1 = [files[ff + 1], ]
            for file1 in files1[0:num]:  # :
                img1 = im2tensor(
                    load_image(os.path.join(image_dir + dataset_teacher + '/fake_images/' + str(i), file1))).to(
                    device)  # RGB image from [-1,1]
                # Compute distance
                dist01 = model.forward(img0, img1)
                dists_among_fake_imgs.append(dist01.item())
    avg_dist_among_fake_imgs = numpy.mean(numpy.array(dists_among_fake_imgs))
    stderr_dist_among_fake_imgs = numpy.std(numpy.array(dists_among_fake_imgs))/numpy.sqrt(len(dists_among_fake_imgs))
    print("[LPIPS_mean: %s] [LPIPS_std: %s] " % (
        avg_dist_among_fake_imgs, stderr_dist_among_fake_imgs))
    with open(output_file, 'a') as f:
        f.write(str(avg_dist_among_fake_imgs) + '\n')
        f.close()
Example #2
0
                        fn.split('/')[-1]))

                # PSNR
                img_gt = (val_H * 255).astype(np.uint8)
                img_target = ((batch_Out) * 255).astype(np.uint8)

                CROP_S = 16
                if CROP_S > 0:
                    img_gt = img_gt[CROP_S:-CROP_S, CROP_S:-CROP_S]
                    img_target = img_target[CROP_S:-CROP_S, CROP_S:-CROP_S]

                psnrs.append(
                    PSNR(
                        _rgb2ycbcr(img_gt)[:, :, 0],
                        _rgb2ycbcr(img_target)[:, :, 0], 0))

                # LPIPS
                dist = model_LPIPS.forward(
                    im2tensor(img_target),
                    im2tensor(img_gt))  # RGB image from [0,255] to [-1,1]
                lpips.append(dist)

        print('AVG PSNR/LPIPS: Validation: {}/{}'.format(
            np.mean(np.asarray(psnrs)), np.mean(np.asarray(lpips))))

        # Save best model
        if i % I_SAVE == 0:
            if np.mean(np.asarray(lpips)) < best_avg_lpips:
                best_avg_lpips = np.mean(np.asarray(lpips))
                SaveCheckpoint(i, best=True)
Example #3
0
                testset, out_fn))

            # Evaluation
            CROP_S = 4

            # PSNR
            psnrs.append(PSNR(img_gt_y, batch_out_y, CROP_S))

            # SSIM
            ssims.append(
                skimage.metrics.structural_similarity(
                    img_gt_y,
                    batch_out_y,
                    data_range=255,
                    multichannel=False,
                    gaussian_weights=True,
                    sigma=1.5,
                    use_sample_covariance=False))

            # LPIPS
            img_gt_t = im2tensor(img_gt)
            batch_out_t = im2tensor(batch_out)
            if CROP_S > 0:
                batch_out_t = batch_out_t[:, :, CROP_S:-CROP_S, CROP_S:-CROP_S]
                img_gt_t = img_gt_t[:, :, CROP_S:-CROP_S, CROP_S:-CROP_S]
            lpips.append(model_LPIPS.forward(batch_out_t, img_gt_t))

        print('{} AVG PSNR/SSIM/LPIPS: {}/{}/{}'.format(
            testset, np.mean(np.asarray(psnrs)), np.mean(np.asarray(ssims)),
            np.mean(np.asarray(lpips))))
Example #4
0
                img_gt = np.around(img_H * 255).astype(np.uint8)
                img_out = np.around(batch_output * 255).astype(np.uint8)

                Image.fromarray(img_out).save('{}/result/{}/{}/{}.png'.format(
                    EXP_NAME, str(VERSION), valset_name,
                    fn.split('/')[-1]))

                # PSNR
                CROP_S = 4
                psnrs.append(
                    PSNR(
                        _rgb2ycbcr(img_gt)[:, :, 0],
                        _rgb2ycbcr(img_out)[:, :, 0], CROP_S))

                # LPIPS
                img_gt = im2tensor(img_gt)  # RGB image from [-1,1]
                img_out = im2tensor(img_out)
                if CROP_S > 0:
                    img_out = img_out[:, :, CROP_S:-CROP_S, CROP_S:-CROP_S]
                    img_gt = img_gt[:, :, CROP_S:-CROP_S, CROP_S:-CROP_S]
                dist = model_LPIPS.forward(img_out, img_gt)
                lpips.append(dist)

        mean_psnr = np.mean(np.asarray(psnrs))
        mean_lpips = np.mean(np.asarray(lpips))

        print('AVG PSNR/LPIPS: {}: {}/{}'.format(valset_name, mean_psnr,
                                                 mean_lpips))

        writer.add_scalar(valset_name, mean_psnr, i)
        writer.add_scalar(valset_name + '_lpips', mean_lpips, i)