def step_statictics(simu, network, plot, inputs, outputs): cell = [0 for _ in range(10)] for k in range(10): if index_max_nth(network['FoN'].stateOutputNeurons, k) == index_max(outputs): cell[k] = 1 break #rms simu.rms('FoN', inputs, outputs) simu.rms('SoN', network['FoN'].stateHiddenNeurons, cell) #err simu.perf('FoN', outputs) simu.perf('SoN', cell) #wager ratio if (index_max(network['SoN'].stateOutputNeurons) == 0): plot['high_wager'] += 1 #feedback if (index_max_nth( network['FoN'].stateOutputNeurons, index_max( network['SoN'].stateOutputNeurons)) == index_max(outputs)): plot['feedback'] += 1
def step_statictics(simu, network, plot, inputs, outputs): cell = [0., 0.] if index_max(network['FoN'].stateOutputNeurons) == index_max(outputs): cell = [0., 1] else: cell = [1, 0.] #rms simu.rms('FoN', inputs, outputs) simu.rms('SoN', network['FoN'].stateHiddenNeurons, cell) #err simu.perf('FoN', outputs) simu.perf('SoN', cell) #wager ratio if(index_max(network['SoN'].stateOutputNeurons) == 1): plot['high_wager'] += 1 #feedback if(index_max(network['SoN'].stateOutputNeurons) == 1): if(index_max(network['FoN'].stateOutputNeurons) == index_max(outputs)): plot['feedback'] += 1 if(index_max(network['SoN'].stateOutputNeurons) == 0): if(index_max_nth(network['FoN'].stateOutputNeurons,1) == index_max(outputs)): plot['feedback'] += 1
def step_statictics(simu, network, plot, inputs, outputs): cell = [0., 0.] if index_max(network['FoN'].stateOutputNeurons) == index_max(outputs): cell = [0., 1] else: cell = [1, 0.] #rms simu.rms('FoN', inputs, outputs) simu.rms('SoN', network['FoN'].stateHiddenNeurons, cell) #err simu.perf('FoN', outputs) simu.perf('SoN', cell) #wager ratio if (index_max(network['SoN'].stateOutputNeurons) == 1): plot['high_wager'] += 1 #feedback if (index_max(network['SoN'].stateOutputNeurons) == 1): if (index_max( network['FoN'].stateOutputNeurons) == index_max(outputs)): plot['feedback'] += 1 if (index_max(network['SoN'].stateOutputNeurons) == 0): if (index_max_nth(network['FoN'].stateOutputNeurons, 1) == index_max(outputs)): plot['feedback'] += 1
def step_learn(network, inputs, outputs): cell = [0 for _ in range(10)] for k in range(10): if index_max_nth(network['FoN'].stateOutputNeurons, k) == index_max(outputs): cell[k] = 1 break #Learning network['SoN'].train(network['FoN'].stateHiddenNeurons, cell) network['FoN'].train(inputs, outputs)
def step_statictics(simu, network, plot, inputs, outputs): cell = [0 for _ in range(10)] for k in range(10): if index_max_nth(network['FoN'].stateOutputNeurons, k) == index_max(outputs): cell[k] = 1 break #rms simu.rms('FoN', inputs, outputs) simu.rms('SoN', network['FoN'].stateHiddenNeurons, cell) #err simu.perf('FoN', outputs) simu.perf('SoN', cell) #wager ratio if(index_max(network['SoN'].stateOutputNeurons) == 0): plot['high_wager'] += 1 #feedback if(index_max_nth(network['FoN'].stateOutputNeurons, index_max(network['SoN'].stateOutputNeurons)) == index_max(outputs)): plot['feedback'] += 1