def __init__(self, greyscale=False, n_item=None, resize=None, frame2=False, shiny=False, label=False): self.dir = os.path.join(os.environ["DATASETS"], 'pokemon_sprites/emerald/') self.dir_shiny = os.path.join(self.dir, 'shiny/') self.dir_frame2 = os.path.join(self.dir, 'frame2/') self.greyscale = greyscale self.images = ut.list_files(os.path.join(self.dir, "*")) self.images_shiny = ut.list_files(os.path.join(self.dir_shiny, "*")) self.images_frame2 = ut.list_files(os.path.join(self.dir_frame2, "*")) self.images += self.images_shiny if shiny else [] self.images += self.images_frame2 if frame2 else [] if not resize: resize = [64, 64] self.general_transform = transforms.Compose([ transforms.Resize(resize), transforms.ToTensor() ]) if n_item: self.images = np.random.choice(self.images, size=(n_item, )).tolist() * (1000//n_item) self.path_to_label = None self.label_map = None self.load_labels('type1', frame2, shiny)
def lp_list(self, config, topos=False, layouts=False): """ list module of linchpin """ if topos and layouts: t_files = list_files(config.clipath+"/ex_topo") l_files = list_files(config.clipath+"/inventory_layouts") return (t_files, l_files) if topos: t_files = list_files(config.clipath+"/ex_topo") return t_files if layouts: l_files = list_files(config.clipath+"/inventory_layouts") return l_files
def random_style_transfer(in_path = 'images/', out_path = 'processed_images/', checkpoint_path = 'checkpoints', allow_different_dimensions = True, batch_size = 1, device = '/gpu:0'): checkpoints = list_files(checkpoint_path) files = [fname for fname in list_files(in_path) if fname not in list_files('processed_images/')] fullprocess = [(os.path.join(in_path,x),os.path.join(out_path,x),f'{checkpoint_path}/{random.sample(checkpoints,1)[0]}') for x in files] for tup in fullprocess: print(tup) if allow_different_dimensions: ffwd_different_dimensions([tup[0]], [tup[1]], tup[2], device_t=device, batch_size=batch_size) else : ffwd([tup[0]], [tup[1]], tup[2], device_t=device, batch_size=batch_size)
def lp_list(self, config, topos=False, layouts=False): """ list module of linchpin """ if topos and layouts: t_files = list_files(config.clipath + "/ex_topo") l_files = list_files(config.clipath + "/inventory_layouts") return (t_files, l_files) if topos: t_files = list_files(config.clipath + "/ex_topo") return t_files if layouts: l_files = list_files(config.clipath + "/inventory_layouts") return l_files
def plot_random_patches(patches_path, n_patches, classes, class_names): """ plot random patches with ground truth arguments --------- patches_path: string path to folder containing the patches n_patches: int number of random patches to plot classes: list list of predicted classes class_names: list output ------ figure with n_patches plotted in first row and ground truth in second row. """ images_path = patches_path + 'images/' labels_path = patches_path + 'labels/' rows = 2 cols = n_patches # get path images list im_list = list_files(images_path, '.npy') gt_list = list_files(labels_path, '.npy') # prepare index = np.array([0,1,2]) fig, ax = plt.subplots(rows,cols) for i in range(n_patches): idx=np.random.randint(len(im_list)) im = np.load(images_path + im_list[idx]) gt = np.load(labels_path + gt_list[idx]) # prepare RGB plot plt_im = im[:, :, index].astype(np.float64) # prepare gt plot plt_gt = np.zeros_like(gt, dtype=np.uint8) plt_gt = np.argmax(gt, axis=2) # plot training image image = ax[0,i].imshow(plt_im) # plot gt grtr = ax[1,i].imshow(plt_gt, cmap=cmap, vmin=0, vmax=4) #colors not right ep.draw_legend(grtr,titles=class_names,classes=classes)
def load_config(config_directory): global global_config, profiles, transproxies global_config = yaml.load( open(os.path.join(config_directory, "global.yaml")).read()) profiles = [] for path in utils.list_files(os.path.join(config_directory, "profiles")): profiles.append(yaml.load(open(path).read())) get_filename = lambda path: os.path.splitext(os.path.basename(path))[0] transproxies = {} for path in utils.list_files(os.path.join(config_directory, "transproxies")): transproxies[get_filename(path)] = (yaml.load(open(path).read()))
def main(): parser = build_parser() opts = parser.parse_args() check_opts(opts) if not os.path.isdir(opts.in_path): if os.path.exists(opts.out_path) and os.path.isdir(opts.out_path): out_path = \ os.path.join(opts.out_path,os.path.basename(opts.in_path)) else: out_path = opts.out_path ffwd_to_img( opts.in_path, out_path, opts.checkpoint_dir, device=opts.device) else: files = list_files(opts.in_path) full_in = [os.path.join(opts.in_path, x) for x in files] full_out = [os.path.join(opts.out_path, x) for x in files] if opts.allow_different_dimensions: ffwd_different_dimensions( full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size) else: ffwd( full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size)
def main(): parser = build_parser() opts = parser.parse_args() check_opts(opts) if not os.path.isdir(opts.in_path): if os.path.exists(opts.out_path) and os.path.isdir(opts.out_path): out_path = os.path.join(opts.out_path, os.path.basename(opts.in_path)) else: out_path = opts.out_path ffwd_to_img(opts.in_path, out_path, opts.checkpoint_dir, device=opts.device) else: files = list_files(opts.in_path) full_in = map(lambda x: os.path.join(opts.in_path, x), files) full_out = map(lambda x: os.path.join(opts.out_path, x), files) ffwd(full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size)
def main(): parser = build_parser() options = parser.parse_args() check_opts(options) style_target = get_img(options.style) content_targets = list_files(options.train_path) kwargs = { "epochs":options.epochs, "print_iterations":options.checkpoint_iterations, "batch_size":options.batch_size, "checkpoint_dir":os.path.join(options.checkpoint_dir,'fns.ckpt'), "summary_dir":options.summary_dir, "learning_rate":options.learning_rate } args = [ content_targets, style_target, options.content_weight, options.style_weight, options.tv_weight, options.vgg_path ] start_time = time.time() for preds, losses, i, epoch in optimize(*args, **kwargs): style_loss, content_loss, tv_loss, loss = losses print('{0} ---------- Epoch: {1}, Iteration: {2}----------'.format(time.ctime(), epoch, i)) print('Total loss: {0}, Style loss: {1}, Content loss: {2}, TV loss: {3}' .format(loss, style_loss, content_loss, tv_loss)) print("Training complete! Total training time is {0} s".format(time.time() - start_time))
def test_list_files(self): """ Test the function list_files. """ files = ( os.path.join('folder_0', 'subfolder_0', 'file_0'), os.path.join('folder_0', 'subfolder_0', 'file_1'), os.path.join('folder_0', 'subfolder_1', 'file_0'), os.path.join('folder_0', 'subfolder_1', 'file_1'), os.path.join('folder_1', 'subfolder_0', 'file_0'), os.path.join('folder_1', 'subfolder_0', 'file_1'), os.path.join('folder_1', 'subfolder_1', 'file_0'), os.path.join('folder_1', 'subfolder_1', 'file_1'), ) with tempfile.TemporaryDirectory() as tmpdirname: for file_ in files: path = os.path.join(tmpdirname, os.path.dirname(file_)) try: os.makedirs(path) except FileExistsError: pass with open(os.path.join(tmpdirname, file_), 'w') as _: pass files = [os.path.join(tmpdirname, file_) for file_ in files] listed_files = list_files(tmpdirname) self.assertEqual(sorted(listed_files), sorted(files))
def main(): parser = build_parser() opts = parser.parse_args() check_opts(opts) if not os.path.isdir(opts.in_path): if os.path.exists(opts.out_path) and os.path.isdir(opts.out_path): out_path = \ os.path.join(opts.out_path,os.path.basename(opts.in_path)) else: out_path = opts.out_path ffwd_to_img(opts.in_path, out_path, opts.checkpoint_dir, device=opts.device) else: files = list_files(opts.in_path) full_in = [os.path.join(opts.in_path, x) for x in files] full_out = [os.path.join(opts.out_path, x) for x in files] if opts.allow_different_dimensions: ffwd_different_dimensions(full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size) else: ffwd(full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size)
def main(): parser = build_parser() opts = parser.parse_args() check_opts(opts) if not os.path.isdir(opts.in_path): if os.path.exists(opts.out_path) and os.path.isdir(opts.out_path): out_path = os.path.join(opts.out_path, os.path.basename(opts.in_path)) else: out_path = opts.out_path # 执行风格迁移预测,输入图像为 opts.in_path,转换后的图像为 out_path,模型文件路径为 opts.model ffwd_to_img(opts.in_path, out_path, opts.model, device=opts.device) else: files = list_files(opts.in_path) full_in = [os.path.join(opts.in_path, x) for x in files] full_out = [os.path.join(opts.out_path, x) for x in files] if opts.allow_different_dimensions: ffwd_different_dimensions(full_in, full_out, opts.model, device_t=opts.device, batch_size=opts.batch_size) else: # 执行风格迁移预测,输入图像的保存路径为 full_in,转换后的图像为 full_out,模型文件路径为 opts.model ffwd(full_in, full_out, opts.model, device_t=opts.device, batch_size=opts.batch_size)
def main(style_im, result_im, chkpt): parser = build_parser() opts = parser.parse_args() opts.in_path = style_im opts.out_path = result_im opts.checkpoint = chkpt # check_opts(opts) if not os.path.isdir(style_im): if os.path.exists(result_im) and os.path.isdir(result_im): out_path = \ os.path.join(result_im,os.path.basename(style_im)) else: out_path = result_im ffwd_to_img(style_im, out_path, chkpt, device=opts.device) else: files = list_files(style_im) full_in = [os.path.join(style_im, x) for x in files] full_out = [os.path.join(result_im, x) for x in files] if opts.allow_different_dimensions: ffwd_different_dimensions(full_in, full_out, chkpt, device_t=opts.device, batch_size=opts.batch_size) else: ffwd(full_in, full_out, opts.checkpoint_dir, device_t=opts.device, batch_size=opts.batch_size)
def __init__(self, root: str = folder, train_subset: bool = True, suffix: str = '.png', min_num_cls: int = 5, max_num_cls: int = 20, k_shot: int = 20, expand_dim: bool = False, load_images: bool = True) -> None: """Initialize a data loader for Omniglot data set or a two-level dataset with structure similar to Omniglot: alphabet -> character -> image Args: root (str): path to the folder of Omniglot data set train_subset (bool): if True, this will load data from the ``images_background`` folder (or, training set). If False, it loads data from ``images_evaluation``` (or, validation set) suffix (str): the suffix of images min_num_cls (int): minimum number of classes within a generated episode max_num_cls (int): maximum number of classes within a generated episode expand_dim (bool): if True, repeat the channel dimension from 1 to 3 load_images (bool): if True, this will place all image data (PIL) on RAM. This option is optimal for small data set since it would speed up the data loading process. If False, it will load images whenever called. This option is suitable for large data set. Returns: an OmniglotLoader instance """ self.root = os.path.join( root, 'images_background' if train_subset else 'images_evaluation') self.suffix = suffix self.min_num_cls = min_num_cls self.max_num_cls = max_num_cls self.k_shot = k_shot self.expand_dim = expand_dim self.load_images = load_images # create a nested dictionary to store data self.data = dict.fromkeys(list_dir(root=self.root)) for alphabet in self.data: self.data[alphabet] = dict.fromkeys( list_dir(root=os.path.join(self.root, alphabet))) # loop through each alphabet for character in self.data[alphabet]: self.data[alphabet][character] = [] # loop through all images in an alphabet character for img_name in list_files(root=os.path.join( self.root, alphabet, character), suffix=suffix): if self.load_images: # load images img = _load_image(img_url=os.path.join( self.root, alphabet, character, img_name), expand_dim=self.expand_dim) else: img = img_name self.data[alphabet][character].append(img)
def main(): parser = build_parser() opts = parser.parse_args() in_dir = os.path.join(opts.tmp_dir, 'in') out_dir = os.path.join(opts.tmp_dir, 'out') if not os.path.exists(in_dir): os.makedirs(in_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) in_args = ['ffmpeg', '-i', opts.in_path, '%s/frame_%%d.png' % in_dir] subprocess.call(" ".join(in_args), shell=True) base_names = list_files(in_dir) in_files = map(lambda x: os.path.join(in_dir, x), base_names) out_files = map(lambda x: os.path.join(out_dir, x), base_names) evaluate.ffwd(in_files, out_files, opts.checkpoint, device_t=opts.device, batch_size=opts.batch_size) fr = 30 # wtf out_args = [ 'ffmpeg', '-i', '%s/frame_%%d.png' % out_dir, '-f', 'mp4', '-q:v', '0', '-vcodec', 'mpeg4', '-r', str(fr), opts.out ] subprocess.call(" ".join(out_args), shell=True) print 'Video at: %s' % opts.out shutil.rmtree(opts.tmp_dir)
def predict(self): if self.model is None: self.build_model() if not os.path.isdir(ROOT_PATH): os.makedirs(ROOT_PATH) path = TEST_PATH files = list_files(path) pix = [] for f in files: pix_file = os.path.join(path, f) pix_data = read_gray(pix_file) pix.append(pix_data) # print(pix_file) pix = np.array(pix) print("Test image max: ", np.amax(pix)) pix = pix / 255.0 print("Normalized image max: ", np.amax(pix)) ipix = np.expand_dims(pix, axis=3) for i in range(ipix.shape[0]): img = ipix[i] img = np.expand_dims(img, axis=0) out_pix = self.model.predict([img, img, img, img]) out_pix[out_pix >= self.thresh] = 1.0 out_pix[out_pix < self.thresh] = 0.0 out_pix = np.squeeze(out_pix) * 255.0 out_pix = out_pix.astype(np.uint8) path = os.path.join(ROOT_PATH, files[i]) print("Saving ... ", path) imsave(path, out_pix, cmap='gray')
def generate_barplots(self, sub_directory): csv_files = [ f for f in list_files(sub_directory) if f.endswith('.csv') ] fig, axPS = plt.subplots(nrows=len(csv_files), ncols=3, figsize=(90, 60)) for i, csv_file in enumerate(csv_files): title = self.plot_title(csv_file) data = pd.read_csv(csv_file) low_f1 = self.make_barplot(data, axPS[i][0], y='Low_F1', title=title) medium_f1 = self.make_barplot(data, axPS[i][1], y='Medium_F1', title=title) high_f1 = self.make_barplot(data, axPS[i][2], y='High_F1', title=title) fig.savefig(os.path.join(sub_directory, 'plots.png')) plt.close(fig)
def create_BOW(root_directory='./preprocessed_texts/'): """ :type root_directory: str """ training_path = os.path.join(root_directory, "training") training_bag_of_author = {} # super_counter = Counter() doc_count_of_author = {} authors = list_dirs(training_path) # total_doc_count = 0 for author in authors: bag = Counter() author_path = os.path.join(training_path, author) files_of_author = list_files(author_path) for filename in files_of_author: file_path = os.path.join(author_path, filename) tokens = tokenize_file(file_path) bag += Counter(tokens) training_bag_of_author[author] = bag doc_count = len(files_of_author) doc_count_of_author[author] = doc_count # total_doc_count += doc_count # super_counter += bag # print(super_counter.most_common(10)) return training_bag_of_author, doc_count_of_author
def __init__(self, mode = 'argument'): if mode not in ['argument', 'trigger', 'joint']: print 'ERROR, wrong mode of calling FeatureVector class! ' #get handles to all phi functions self.methods = inspect.getmembers(self, predicate=inspect.ismethod) self.mode = mode if self.mode == 'argument' or self.mode == 'trigger': self.phi_list = [method[1] for method in self.methods if 'phi_'+mode in method[0]] elif mode == 'joint': self.phi_list_arg = [method[1] for method in self.methods if 'phi_argument' in method[0]] self.phi_list_trig = [method[1] for method in self.methods if 'phi_trigger' in method[0]] #load relevant other data from presaved files. self.listOfAllFiles = utils.list_files() self.all_grammar_tags = utils.get_grammar_tag_list() self.trigger_list = utils.get_trigger_list() self.stem_list_triggers = utils.create_stem_list_trigger(cutoff = 5, load=True) self.stem_list_arguments = utils.create_stem_list_arguments(cutoff = 5, load=True) self.mod_list_triggers = utils.create_mod_list_trigger(cutoff = 25, load=False) self.arguments_list = [u'None', u'Theme', u'Cause'] self.dep_list_total = utils.identify_all_dep_labels(load = True) self.trig2arg_deps = utils.create_dep_list_trig2arg(cutoff = 2, load = True)
def main( original_path: str, executable_path: str = EXECUTABLE_PATH, destination_path: str = None, overwrite: bool = False, ): """ Run batch conversion process. Args: original_path: path to the dataset to convert. executable_path: path to the converter executable. destination_path: destination path. overwrite: if True, any previous .edf with the same name will be overwrited. """ print('1 - List the files to convert...') files = [ os.path.abspath(file_) for file_ in list_files(original_path) if os.path.basename(file_).lower().endswith('.eeg') ] n_files = len(files) print('{0} file(s) will be converted.'.format(n_files)) print('2 - Convert files') for index, file_ in enumerate(sorted(files), start=1): # Destination file path if destination_path is None: file_destination_path = file_[:-4] + '.EDF' else: file_destination_path = os.path.join( destination_path, os.path.relpath(file_, original_path)) print( '({0}/{1}) Convert "{2}" to "{3}"'.format( index, n_files, file_, file_destination_path, ), ) ensure_path(path=os.path.dirname(file_destination_path)) if os.path.isfile(file_destination_path) and not overwrite: print('File has already been converted.') else: if os.path.isfile(file_destination_path): print('File has already been converted (will be overwrited).') convert_coh3_to_edf( executable_path=executable_path, eeg_path=file_, edf_path=file_destination_path, ) if n_files: print('3 - Kill the converter process(es).') os.system( 'taskkill /f /im {0}'.format( os.path.basename(executable_path), ), )
def create_mdtm_files(base_path, train_frac, val_frac): files = list(list_files(base_path, lambda x: x.endswith("cha_pickle"))) random.shuffle(files) n = len(files) mdtm_helper("train", files[:int(train_frac * n)]) mdtm_helper("validation", files[int(train_frac * n):int((train_frac + val_frac) * n)]) mdtm_helper("test", files[int((train_frac + val_frac) * n):])
def checkName(): name = request.form['name'] data = {'res': 1} if name in utils.list_files(baseDir): data['res'] = 0 return jsonify(data)
def __init__(self, root): self.root = root if not posixpath.exists(posixpath.join(self.root, self.ukbench_dir)): download(self.root, self.filename, self.url) unzip(self.root, self.filename, self.ukbench_dir) self.uris = sorted( list_files(root=posixpath.join(self.root, self.ukbench_dir, 'full'), suffix=('png', 'jpg', 'jpeg', 'gif')))
def __init__(self, root): self.root = root if not posixpath.exists(posixpath.join(self.root, self.ukbench_dir)): download(self.url, self.root, self.filename, untar=True) self.uris = list_files(posixpath.join(self.root, self.ukbench_dir, 'full'), ('png', 'jpg', 'jpeg', 'gif')) self.uris.sort()
def load_files(self): self.reset_state() filetypes = constants.FILETYPES[self.get_mode()]['extensions'] self.found_files_frame.set_files( utils.list_files(self.get_sd_card_root(), filetypes), filetypes) self.update_options() self.load_playlists()
def _get_files_and_labels(img_dir): files = utils.list_files(img_dir) labels = [CLASS_MAP[x.split('_')[2][:-4]] for x in files] files, labels = utils.resample_unbalanced_data(files, labels) unique, counts = np.unique(labels, return_counts=True) print '{} labels has counts as: {}'.format(unique, counts) return [os.path.join(img_dir, x) for x in files], [utils.to_one_hot(x, 3) for x in labels]
def get_in_pix(filename="in_pix.npy", ispix=True, isskel=False, istest=False): path = PX_PATH if istest: path = PT_PATH if isskel: path = SK_PATH if not ispix: path = path.replace("pixel", "point") files = list_files(path) pix = [] pmax = 0 pmin = 255 maxpts = 0 for f in files: pix_file = os.path.join(path, f) print(pix_file) if ispix: pix_data = read_gray(pix_file) else: image = np.zeros((256, 256), dtype=np.uint8) pix_data = read_points(pix_file) if len(pix_data) > maxpts: maxpts = len(pix_data) for p in pix_data: if p[0] > pmax: pmax = p[0] if p[0] < pmin: pmin = p[0] if p[1] > pmax: pmax = p[1] if p[1] < pmin: pmin = p[1] x = min(round(p[0]), 255) y = min(round(p[1]), 255) image[x][y] = 255 impath = os.path.join("tmp", f + ".png") print("Saving ... ", impath) imsave(impath, image, cmap='gray') pix_data = image pix.append(pix_data) # Max pts: 12270 print("Max pts: ", maxpts) pix = np.array(pix) print("Shape: ", pix.shape) print("PMin: ", pmin) print("PMax: ", pmax) if not istest: pix = np.expand_dims(pix, axis=3) print("Final shape: ", pix.shape) print("Min: ", np.amin(pix)) print("Max: ", np.amax(pix)) if not istest: print("Saving to ", filename) np.save(filename, pix) return pix
def load_data_from_directory(self, directory): data = {} for filename, extension, filepath in list_files(directory): extractor = self.get_extractor_for_extension(extension) if extractor: data[filename] = extractor.extract(filepath) return data
def _get_files(dir): """ Construct dir file list. Arguments: 'dir' - directory for searching Returns: 'files' - array of full file names """ files = list_files(dir) return [os.path.join(dir, x) for x in files]
def copy_supporting_files(start_path, destination): for file in list_files(start_path): if not (file.startswith("_") or file.startswith(".")): print("copying: %s to: %s" % (file, destination)) copy_file(path.join(start_path, file), path.join(destination, file)) for dir in list_dirs(start_path): if not (dir.startswith("_") or dir.startswith(".")): print("copying: %s to: %s" % (dir, destination)) copy_tree(path.join(start_path, dir), path.join(destination, dir))
def copy_folder(src, dst, recursive, link): logger = logging.getLogger(__name__) svc = utils.get_gdrive_service(SCOPES=SCOPES) print("Source: ", utils.full_path(svc, src, tpath=[])) print("Destn: ", utils.full_path(svc, dst, tpath=[])) for fileinfo in utils.iterfiles(svc, parent=src): if dst not in fileinfo['parents']: if link: update_result = svc.files().update( fileId=fileinfo['id'], addParents=dst, fields='id, parents' ).execute() print("update result ", update_result) else: raise NotImplementedError("TODO") utils.list_files(utils.iterfiles(svc, parent=src))
def find_files(start_path, extensions=[".txt"]): """ digs through a directory looksing for text files and directories that don't start in . or _ """ for file in list_files(start_path): name, ext= path.splitext(file) if not (file.startswith("_") or file.startswith(".")) and (ext in extensions): filename = path.join(start_path, file) yield filename
def main(path: str, destination_path: str, use_folder_as_name: bool = True): """Main process. Args: path: path to the dataset. destination_path: destination path to the anonymised dataset. If not set, the files will be overwritten. use_folder_as_name: fill the name field with the name of the parent folder. """ files_in_dataset = [ eeg for eeg in list_files(path) if eeg.lower().endswith('.eeg') ] def folder_name(path): return os.path.basename(os.path.dirname(path)) number_of_files = len(files_in_dataset) for file_index, file_ in enumerate(sorted(files_in_dataset), start=1): # Set name as the parent folder's name or as an empty field if use_folder_as_name: field_name = folder_name(file_) else: field_name = '' # Destination file path if destination_path is None: file_path = file_ else: file_path = os.path.join( destination_path, os.path.relpath(file_, path) ) print( '\nCurrent file ({0}/{1}):'.format(file_index, number_of_files), file_, '-->', file_path, ) try: anonymise_eeg_verbose( file_, file_path, field_name=field_name, verbose=True ) except MemoryError: print('MemoryError: retry...') try: anonymise_eeg_verbose( file_, file_path, field_name=field_name, verbose=True ) except MemoryError: print('MemoryError: not able to process the file') traceback.print_exc()
def calc_metrics(ds_path): file_paths = utils.list_files(ds_path, BTS_SUBDIR, BTS_DATA_SUBDIR) max_depth = 0 for file_path, file_name in file_paths: depth_image = Image.open(file_path).convert('I') depth = np.asarray(depth_image, np.int32) depth = depth.astype(np.float32) / 1000 m = depth.max() print(file_name, m) max_depth = max(max_depth, m) print('---- Max depth:', max_depth)
def lp_layout_list(self, upstream=None): """ search_order : list layouts from upstream if mentioned list layouts from core package """ if upstream is None: l_files = list_files(self.base_path + "/inventory_layouts") return l_files else: g = GitHub(upstream) l_files = [] files = g.list_files("inventory_layouts") return files
def lp_topo_list(self, upstream=None): """ search_order : list topologies from upstream if mentioned list topologies from current folder """ if upstream is None: t_files = list_files(self.base_path + "/ex_topo") return t_files else: print "getting from upstream" g = GitHub(upstream) t_files = [] files = g.list_files("ex_topo") return files
def main(): parser = build_parser() opts = parser.parse_args() if opts.no_disk: evaluate.from_pipe(opts) else: in_dir = os.path.join(opts.tmp_dir, 'in') out_dir = os.path.join(opts.tmp_dir, 'out') if not os.path.exists(in_dir): os.makedirs(in_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) in_args = [ 'ffmpeg', '-i', opts.in_path, '%s/frame_%%d.png' % in_dir ] subprocess.call(" ".join(in_args), shell=True) base_names = list_files(in_dir) in_files = list(map(lambda x: os.path.join(in_dir, x), base_names)) out_files = list(map(lambda x: os.path.join(out_dir, x), base_names)) evaluate.ffwd(in_files, out_files, opts.checkpoint, device_t=opts.device, batch_size=opts.batch_size) fr = 30 # wtf out_args = [ 'ffmpeg', '-i', '%s/frame_%%d.png' % out_dir, '-f', 'mp4', '-q:v', '0', '-vcodec', 'mpeg4', '-r', str(fr), opts.out ] subprocess.call(" ".join(out_args), shell=True) print('Video at: %s' % opts.out) shutil.rmtree(opts.tmp_dir)
def calculate_confusion_matrix(training_bags, doc_counts, output_path='./preprocessed_texts/'): authors = list(training_bags.keys()) confusion_matrix = np.zeros([len(authors), len(authors)], dtype=np.integer) test_path = os.path.join(output_path, "test") for i, author in enumerate(authors): # bag = Counter() author_path = os.path.join(test_path, author) files_of_author = list_files(author_path) for filename in files_of_author: file_path = os.path.join(author_path, filename) tokens = tokenize_file(file_path) author_candidates = calculate_probability_of_author( tokens=tokens, training_bags=training_bags, doc_counts=doc_counts) candidate_index = authors.index(author_candidates[0][0]) confusion_matrix[i, candidate_index] += 1 # print(confusion) return confusion_matrix
def _get_files(img_dir): files = list_files(img_dir) return [os.path.join(img_dir, x) for x in files]
def main(): ################### EXPLORATORY DATA ANALYSIS ############################# # Just testing my functions a bit list_of_files = utils.list_files() print (list_of_files[0]) f1 = utils.load_json_file(list_of_files[0]) pprint(len(f1['sentences'])) # Finding and counting all event triggers t = utils.get_all_triggers(list_of_files) print("Number of distinct event triggers: {0}".format(len(t.keys()))) pprint(t) # Finding and counting all possible arguments (=relationship labels) arg = utils.get_all_arguments(list_of_files) print("Number of relation arguments: {0}".format(len(arg.keys()))) pprint(arg) ########################## NAIVE BAYES #################################### # Crossvalidation rates = [0.5,0.6,0.7,0.8,0.9,0.95] # x = crossvalidation_experiment(rates, list_of_files, load=True, mode='trig', k=3) # pprint(x) # x2 = crossvalidation_experiment(rates, list_of_files, load=True, mode='arg', k=3) # pprint(x2) ## Naive Bayes on trigger # Read data print "Experiment 1: Naive Bayes predicting triggers" FV_trig = feature_vector.FeatureVector('trigger') train_list, valid_list = utils.create_training_and_validation_file_lists(list_of_files) X_train, y_train = build_dataset(train_list, FV_trig, ind=1, kind='train', mode='trig', clf='nb', load=True) X_train, y_train = subsample(X_train, y_train, clf='nb', subsampling_rate=0.50) X_valid, y_valid = build_dataset(valid_list, FV_trig, ind=1, kind='valid', mode='trig', clf='nb', load=True) NB_trig = nb.NaiveBayes() NB_trig.train(np.asarray(X_train.todense()),np.asarray(y_train)) # print "Evaluate Naive Bayes classifer predicting triggers on the train set..." # CM, prec, rec, F1 = NB_trig.evaluate(np.asarray(X_train.todense()), np.asarray(y_train)) # print "Precision: {0}".format(prec) # print "Recall: {0}".format(rec) # print "F1-measure: {0}".format(F1) # print "Confusion matrix:\n", np.int64(CM) print "Evaluate Naive Bayes classifer predicting triggers on the validation set..." CM, prec, rec, F1 = NB_trig.evaluate(np.asarray(X_valid.todense()), np.asarray(y_valid)) print "Precision: {0}".format(prec) print "Recall: {0}".format(rec) print "F1-measure: {0}".format(F1) print "Confusion matrix:\n", np.int64(CM) ## Naive Bayes on argument print "Experiment 2: Naive Bayes predicting arguments" FV_arg = feature_vector.FeatureVector('argument') X_train, y_train = build_dataset(train_list, FV_arg, ind=1, kind='train', mode='arg', clf='nb', load=True) X_train, y_train = subsample(X_train, y_train, clf='nb', subsampling_rate=0.50) X_valid, y_valid = build_dataset(valid_list, FV_arg, ind=1, kind='valid', mode='arg', clf='nb', load=True) NB_arg = nb.NaiveBayes() NB_arg.train(np.asarray(X_train.todense()), np.asarray(y_train)) # print "Evaluate Naive Bayes classifer predicting arguments on the train set..." # CM, prec, rec, F1 = NB_arg.evaluate(np.asarray(X_train.todense()), np.asarray(y_train)) # print "Precision: {0}".format(prec) # print "Recall: {0}".format(rec) # print "F1-measure: {0}".format(F1) # print "Confusion matrix:\n", np.int64(CM) print "Evaluate Naive Bayes classifer predicting arguments on the validation set..." CM, prec, rec, F1 = NB_arg.evaluate(np.asarray(X_valid.todense()), np.asarray(y_valid)) print "Precision: {0}".format(prec) print "Recall: {0}".format(rec) print "F1-measure: {0}".format(F1) print "Confusion matrix:\n", np.int64(CM)
import os import perceptron_sketch as perc import feature_vector import cPickle import json #for classification of error types: #test_files_list =['C:/Python27/aaa_UCL/Natural Language Processing/assignment2/PMID-1653950.json'] #for running the test data: test_path_inputs ='C:/Python27/aaa_UCL/Natural Language Processing/assignment2/bionlp2011genia-statnlp-test-clean/*.json' test_files_output_dir = 'C:/Python27/aaa_UCL/Natural Language Processing/assignment2/predictions/' test_files_list = utils.list_files(path=test_path_inputs) if not os.path.exists(test_files_output_dir): os.makedirs(test_files_output_dir) evaluate_test_list = test_files_list FV_arg = feature_vector.FeatureVector('argument') FV_trig = feature_vector.FeatureVector('trigger') #load weights of pretrained perceptron. with open('Perceptron_trigger.data', 'rb') as f: Lambda_e, misc_e = cPickle.load(f) with open('Perceptron_argument.data', 'rb') as f: Lambda_a, misc_a = cPickle.load(f)
def _get_files(img_dir): files = list_files(img_dir) return map(lambda x: os.path.join(img_dir,x), files)
import sys sys.path.append((sys.path[0]+'/pysrc')) import os from utils import print_msg,get_filename,dump_csv,classify_symms_args,list_files,dump_typified_symm_file2,dump_typified_symm_file import stats import parser as myparser import analyzer parser = classify_symms_args() # parse command line arguments args = parser.parse_args() problems = [] if not args.symmfolder is None: problems = list_files(args.symmfolder, '.symm') else: parser.error('You must provide a folder to process.') print_msg('===========================================') print_msg(('Starting classify_symms.py')) print_msg('===========================================') print_msg(('Variable File: %s' % args.varfile )) print_msg(('Input Folder: %s ' % args.symmfolder)) print_msg(('Output Folder: %s' % args.folder)) print_msg(('Human Readable: %s' % (not args.computer))) print_msg('-------------------------------------------',args.silent) print_msg(('%s files were find' % len(problems)),args.silent) print_msg(('Loading variables file: %s' % args.varfile),args.silent) vars_t = analyzer.load_vars_file(args.varfile)