Example #1
0
def main():
    args = parse_args()
    gpu = torch.cuda.is_available() and not args.force_cpu

    content_image = load_image_from_url(
        args.content_url) if args.content_url else load_image(
            args.content_path)
    style_image = load_image_from_url(
        args.style_url) if args.style_url else load_image(args.style_path)

    content_var = load_variable(content_image, gpu=gpu)
    style_var = load_variable(style_image, gpu=gpu)

    net = load_features_extractor(args.net)
    model = NeuralStyleNet(net)
    if gpu:
        model.cuda()

    solver = Solver(model,
                    content_var,
                    style_var,
                    num_iters=args.num_iters,
                    gpu=gpu)
    styled_image = solver.train()
    styled_image.save(args.output_path)
Example #2
0
def valid_image(img_url):
    """ Validates that the given URL is actually a valid image.
        Returns True if there's a valid image at the given URL, and False otherwise.

        img_url -- The URL of the possible image.
    """
    return True
    return load_image_from_url( img_url )
Example #3
0
def polygons():
    url = request.args.get("url")
    img = load_image_from_url(url)

    predictions = ml.detector.get_polygonal_outputs(img)

    response = {"successful": True, "data": predictions}
    return jsonify(response)
Example #4
0
 def hash(self):
     image_hash = db.get_full_item(self.image_id).get('hash_md5', None)
     if image_hash is None:
         if self._image is None:
             image_hash = image_hash_md5(load_image_from_url(self.url))
         else:
             image_hash = image_hash_md5(self._image)
         db.get_full_item(self.image_id)['hash_md5'] = image_hash
     return image_hash
Example #5
0
    def image(self):
        if self._image is None:
            # self._image = random_image(self.image_id)
            self._image = load_image_from_url(self.url)
            # self._image = resize_image(self._image, 400)
            basic_image_id = self.basic_image_id

            angle = db.get_full_item(basic_image_id).get('angle', None)
            borders = db.get_full_item(basic_image_id).get('borders', None)

            (self._image, angle, borders) = transform_image(self._image,
                                                            angle=angle,
                                                            borders=borders)
            db.get_full_item(self.image_id)['angle'] = angle
            db.get_full_item(self.image_id)['borders'] = borders

        return self._image
Example #6
0
def preprocess_vk_images(images):
    result = []
    i = 0
    for photos in images:
        if i > 2:
            break
        try:
            for size in photos['sizes']:
                if size['type'] == 'x':
                    preprocessed = preprocess(load_image_from_url(
                        size['url']))[0]
                    # plt.imshow(preprocessed)
                    # plt.show()
                    result.append(np.array(preprocessed))
        except BaseException:
            i -= 1
        i += 1
    return result
Example #7
0
def async_rendered():
    tmp_img = f"/tmp/{uuid.uuid4()}.png"
    if request.method == 'POST':
        img = load_image_from_formdata(request.files['file'].stream)

    elif request.method == 'GET':
        url = request.args.get("url")
        img = load_image_from_url(url)

    cv2.imwrite(tmp_img, img)

    rendered_image_name = f"{uuid.uuid4()}.png"
    output_file_name = f"{ml.cwd}/static/{rendered_image_name}"
    job = async_predict_rendered.apply_async(args=[tmp_img, output_file_name])

    response = {"successful": True, "data": {"jobid": job.id}}

    return jsonify(response), 200
Example #8
0
def rendered():
    if request.method == 'POST':
        img = load_image_from_formdata(request.files['file'].stream)

    elif request.method == 'GET':
        url = request.args.get("url")
        img = load_image_from_url(url)

    rendered_image_name = f"{uuid.uuid4()}.png"
    output_file_name = f"{ml.cwd}/static/{rendered_image_name}"
    rendered = ml.detector.get_rendered_outputs(img, savename=output_file_name)

    response = {
        "successful": True,
        "data": {
            "url":
            url_for('ml.static', filename=rendered_image_name, _external=True)
        }
    }

    return jsonify(response)
Example #9
0
    "convert db (format 2.0) to format 3.0 (adding hash for every picture")
parser.add_argument('-f',
                    '--fromfile',
                    type=str,
                    required=True,
                    help='file to convert from')
parser.add_argument('-t',
                    '--tofile',
                    type=str,
                    required=True,
                    help='file to save to')

args = parser.parse_args()

from_file = args.fromfile
to_file = args.tofile

with open(from_file, 'r') as f:
    db = json.loads(f.read())

for image_id in tqdm(db):
    image_obj = db[image_id]
    md = image_obj.get('markdown', {})
    if md == {}:
        continue
    image = load_image_from_url(image_obj['url'])
    image_obj['hash_md5'] = image_hash_md5(image)

with open(to_file, 'w') as f:
    print(json.dumps(db, indent=4, sort_keys=True), file=f)
    np.random.seed(123)
    # read db file
    with open(DB_FILE_PATH, 'r') as f_to_read_json:
        db_json = json.loads(f_to_read_json.read())

    model_corners = ModelCorners(threshold=MODELS_CORNERS_THRESHOLD )
    model_edges = ModelEdges(threshold=MODELS_EDGES_THRESHOLD)
    model_corners.load(MODELS_CORNERS_MODEL)
    model_edges.load(MODELS_EDGES_MODEL)

    keys = sorted(list(db_json.keys()), key=int)
    for ic, image_id in enumerate(tqdm(keys)):
        # get markdown
        print('start ', image_id)
        section = db_json[image_id]
        image = load_image_from_url(section['url'])

        if 'angle' not in section:
            section['angle'] = 0
        if 'borders' not in section:
            section['borders'] = {
                "bottom_border": image.size[1],
                "left_border": 0,
                "right_border": image.size[1],
                "up_border": 0
            }

        image = transform_image(image, section['angle'], section['borders'])[0]
        image = clean_image(image)
        # predict markdown
        print('predict corners..')