default='spiral', help='Dataset: select between "spiral" and "flower".') parser.add_argument('-d', '--debug', action='store_true', help='Used for gradient checking.') FLAGS, unparsed = parser.parse_known_args() ##====================================================================== ## STEP 1: Loading data # # In this section, we load the training examples and their labels. if FLAGS.input_data == 'spiral': instances, labels, numClasses = utils.load_spiral_dataset() elif FLAGS.input_data == 'flower': instances, labels, numClasses = utils.load_flower_dataset() else: print('Wrong dataset specified. Select between "spiral" and "flower".') sys.exit(1) inputSize = instances.shape[0] numExamples = instances.shape[1] # For debugging purposes, you may wish to reduce the size of the input data # in order to speed up gradient checking. # Here, we create synthetic dataset using random data for testing if FLAGS.debug: inputSize = 8
parser.add_argument('-d', '--debug', action='store_true', help='Used for gradient checking.') FLAGS, unparsed = parser.parse_known_args() torch.manual_seed(3) ##====================================================================== ## STEP 1: Load data # # In this section, we load the training instances and their labels. if FLAGS.input_data == 'spiral': X, y, n_y = utils.load_spiral_dataset() # Set hyper-parameters. n_h = 100 decay = 0.001 learning_rate = 1 num_epochs = 10000 elif FLAGS.input_data == 'flower': X, y, n_y = utils.load_flower_dataset() # Set hyper-parameters. n_h = 20 decay = 0 learning_rate = 0.05 num_epochs = 20000 else: print('Wrong dataset specified. Select between "spiral" and "flower".') sys.exit(1)