def _collect_running_batch_states(self): self.running_acc.append(self._compute_acc().item()) m = len(self.dataloaders['train']) if self.is_training is False: m = len(self.dataloaders['val']) if np.mod(self.batch_id, 100) == 1 or self.batch_id == m - 1: print( 'Is_training: %s. [%d,%d][%d,%d], G_loss: %.8f, D_loss: %.8f, running_acc: %.8f (%s),' % (self.is_training, self.epoch_id, self.max_num_epochs - 1, self.batch_id, m, self.G_loss.item(), self.D_loss.item(), np.mean(self.running_acc), self.metric)) if np.mod(self.batch_id, 1000) == 1 or self.batch_id == m - 1: vis_input = utils.make_numpy_grid(self.batch['input']) vis_pred1 = utils.make_numpy_grid(self.G_pred1) vis_pred2 = utils.make_numpy_grid(self.G_pred2) if self.output_auto_enhance: vis_pred1 = vis_pred1 * 1.5 vis_pred2 = vis_pred2 * 1.5 vis = np.concatenate([vis_input, vis_pred1, vis_pred2], axis=0) vis = np.clip(vis, a_min=0.0, a_max=1.0) file_name = os.path.join( self.vis_dir, 'istrain_' + str(self.is_training) + '_' + str(self.epoch_id) + '_' + str(self.batch_id) + '.jpg') plt.imsave(file_name, vis)
def _collect_running_batch_states(self): self.running_acc.append(self._compute_acc().item()) m = len(self.dataloaders['train']) if self.is_training is False: m = len(self.dataloaders['val']) if np.mod(self.batch_id, 100) == 1: print( 'Is_training: %s. [%d,%d][%d,%d], G_loss: %.5f, running_acc: %.5f' % (self.is_training, self.epoch_id, self.max_num_epochs - 1, self.batch_id, m, self.G_loss.item(), np.mean(self.running_acc))) if np.mod(self.batch_id, 1000) == 1: vis_pred_foreground = utils.make_numpy_grid(self.G_pred_foreground) vis_gt_foreground = utils.make_numpy_grid(self.batch['B']) vis_pred_alpha = utils.make_numpy_grid(self.G_pred_alpha) vis_gt_alpha = utils.make_numpy_grid(self.batch['ALPHA']) vis = np.concatenate([ vis_pred_foreground, vis_gt_foreground, vis_pred_alpha, vis_gt_alpha ], axis=0) vis = np.clip(vis, a_min=0.0, a_max=1.0) file_name = os.path.join( self.vis_dir, 'istrain_' + str(self.is_training) + '_' + str(self.epoch_id) + '_' + str(self.batch_id) + '.jpg') plt.imsave(file_name, vis)
def _visualize_batch_and_prediction(self): if np.mod(self.batch_id, 100) == 1: vis_input = utils.make_numpy_grid(self.batch['stereogram']) vis_pred = utils.make_numpy_grid(self.G_pred) vis_gt = utils.make_numpy_grid(self.batch['dmap']) vis = np.concatenate([vis_input, vis_pred, vis_gt], axis=0) vis = np.clip(vis, a_min=0.0, a_max=1.0) file_name = os.path.join( self.vis_dir, 'istrain_' + str(self.is_training) + '_' + str(self.epoch_id) + '_' + str(self.batch_id) + '.jpg') plt.imsave(file_name, vis)