Example #1
0
 def __init__(self, elgmap, ranmap, select_fun, sysm, mask, njack=20):
     self.nside = hp.get_nside(elgmap)
     #delta = np.zeros(elgmap.size)
     #randc = ranmap * select_fun
     #sf    = (elgmap[mask].sum() / randc[mask].sum())
     #delta[mask] = elgmap[mask] / randc[mask] / sf - 1
     delta = makedelta(elgmap,
                       ranmap,
                       mask,
                       select_fun=select_fun,
                       is_sys=False)
     #
     #
     #delta2 = np.zeros(elgmap.size)
     #sf2  = (sysm[mask]*ranmap[mask]).sum() / ranmap[mask].sum()
     #delta2[mask] = sysm[mask] / (sf2 * ranmap[mask]) - 1.0
     #delta2[mask] = sysm[mask] / (sf2) - 1.0
     delta2 = makedelta(sysm, ranmap, mask, is_sys=True)
     #
     #
     w = ranmap[mask]
     theta, phi = hp.pix2ang(self.nside, np.argwhere(mask).flatten())
     thetal, phil, wl, deltal, delta2l = split_jackknife(theta,
                                                         phi,
                                                         w,
                                                         delta[mask],
                                                         delta2[mask],
                                                         njack=njack)
     self.theta = thetal
     self.phi = phil
     self.weight = wl
     self.delta = deltal
     self.delta2 = delta2l
     self.mean1 = np.average(delta[mask], weights=w)
     self.mean2 = np.average(delta2[mask], weights=w)
Example #2
0
    def __init__(self, elgmap, ranmap, sysmap, select_fun, mask):
        self.nside = hp.get_nside(elgmap)
        # set up the delta
        #delta = np.zeros(elgmap.size)
        #randc = ranmap * select_fun
        #sf    = (elgmap[mask].sum() / randc[mask].sum())
        #delta[mask] = elgmap[mask] / randc[mask] / sf - 1
        delta = makedelta(elgmap,
                          ranmap,
                          mask,
                          select_fun=select_fun,
                          is_sys=False)

        #
        # set up the delta
        # delta2 = np.zeros(elgmap.size)
        # sf2  = (sysmap[mask]*ranmap[mask]).sum() / ranmap[mask].sum()
        # delta2[mask] = sysmap[mask] / (sf2) - 1.0
        delta2 = makedelta(sysmap, ranmap, mask, is_sys=True)

        #
        # weight
        w = ranmap[mask]
        theta, phi = hp.pix2ang(self.nside, np.argwhere(mask).flatten())
        self.theta = theta
        self.phi = phi
        self.weight = w
        self.delta = delta[mask]
        self.delta2 = delta2[mask]
        self.mean1 = np.average(delta[mask], weights=w)
        self.mean2 = np.average(delta2[mask], weights=w)
Example #3
0
 def __init__(self, elgmap, ranmap, select_fun, mask, njack=20):
     # set up the delta
     self.nside = hp.get_nside(elgmap)
     #delta = np.zeros(elgmap.size)
     #randc = ranmap * select_fun
     #sf    = (elgmap[mask].sum() / randc[mask].sum())
     #delta[mask] = elgmap[mask] / randc[mask] / sf - 1
     delta = makedelta(elgmap,
                       ranmap,
                       mask,
                       select_fun=select_fun,
                       is_sys=False)
     #
     # weight
     w = ranmap[mask]
     theta, phi = hp.pix2ang(self.nside, np.argwhere(mask).flatten())
     thetal, phil, wl, deltal, _ = split_jackknife(theta,
                                                   phi,
                                                   w,
                                                   delta[mask],
                                                   delta[mask],
                                                   njack=njack)
     print('input njack %d, output njack %d' % (njack, len(wl)))
     self.theta = thetal
     self.phi = phil
     self.weight = wl
     self.delta = deltal
     self.mean1 = np.average(delta[mask], weights=w)
Example #4
0
def hd5_2_fits(metaname, fitname, hpmask, hpfrac, cols, mask_in=None, res=512):
    metadata = pd.read_hdf(metaname)
    ngal = metadata['ngal'].values
    nran = metadata['nran'].values

    if mask_in is None:
        maskou = metadata['mask'].values
    else:
        maskou = metadata['mask'].values & mask_in

    features = metadata[cols][maskou].values
    hpind = np.argwhere(maskou).flatten()
    fracgood = nran / nran[maskou].mean()

    label = ut.makedelta(ngal, fracgood, maskou, select_fun=None,
                         is_sys=False) + 1
    label = label[maskou]
    fracgood = fracgood[maskou]

    # for n in metadata.columns:
    #     print('%20s : %d'%(n, np.isnan(metadata[metadata['mask']][n]).sum()))
    outdata = np.zeros(features.shape[0],
                       dtype=[('label', 'f8'), ('hpind', 'i8'),
                              ('features', ('f8', features.shape[1])),
                              ('fracgood', 'f8')])
    outdata['label'] = label
    outdata['hpind'] = hpind
    outdata['features'] = features
    outdata['fracgood'] = fracgood
    #
    #
    ft.write(fitname, outdata, clobber=True)
    print('wrote %s' % fitname)
    #
    #
    mask = np.zeros(12 * res * res, '?')
    mask[hpind] = True
    hp.write_map(hpmask, mask, overwrite=True, fits_IDL=False)
    print('wrote %s' % hpmask)
    #
    #
    frac = np.zeros(12 * res * res)
    frac[hpind] = fracgood
    hp.write_map(hpfrac, frac, overwrite=True, fits_IDL=False)
    print('wrote %s' % hpfrac)
Example #5
0
        if not os.path.isfile(ns.wmap):
            wmap = None
            log += '{:35s} : {}\n'.format('Computing Cl w/o wmap', ns.wmap)
        else:
            wmap = hp.read_map(ns.wmap, verbose=False)
            log += '{:35s} : {}\n'.format('Computing Cl with wmap', ns.wmap)
            if ns.smooth:
                log += '{:35s}\n'.format('Smoothing the wmap')
                wmap[~mask] = np.mean(
                    wmap[mask]
                )  # fill in empty pixels ?? required for smoothing
                sdeg = np.deg2rad(0.25)  # smooth with sigma of 1/4 of a deg
                wmap = hp.sphtfunc.smoothing(wmap.copy(), sigma=sdeg)
        #
        # construct delta
        delta_ngal = makedelta(galmap, ranmap, mask, select_fun=wmap)
        #
        # compute C_l
        map_i = hp.ma(mask.astype('f8'))
        map_i.mask = np.logical_not(mask)
        clmask = hp.anafast(map_i.filled(), lmax=ns.lmax)
        sf = ((2 * np.arange(clmask.size) + 1) * clmask).sum() / (4. * np.pi)

        map_ngal = hp.ma(delta_ngal * ranmap)
        map_ngal.mask = np.logical_not(mask)
        cl_auto = hp.anafast(map_ngal.filled(), lmax=ns.lmax) / sf
        #
        if ns.njack == 0:
            cl_err = 0.0
        else:
            cl_err = clerr_jack(delta_ngal,