Example #1
0
def train(model, args, epoch, dataset, logger, optimizer):
    model.train()
    total_loss = float(0)
    with tqdm(desc='Training', total=len(dataset)) as pbar:
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break

                pbar.update()
                model.zero_grad()
                output = model(data)
                '''
                target_var = Variable(maybe_cuda(torch.cat(target, 0), args.cuda), requires_grad=False)
                loss = model.criterion(output, target_var)
                '''
                concate_target = torch.cat(target, 0)
                new_target = torch.zeros(concate_target.size()[0], 2)
                new_target[range(new_target.shape[0]), concate_target]=1
                target_var = Variable(maybe_cuda(new_target, args.cuda), requires_grad=False)
                target_var = target_var.type_as(output)
                pos_weight = maybe_cuda(torch.FloatTensor([0.1, 1.0]))

                loss = F.binary_cross_entropy_with_logits(output, target_var, reduction='sum', pos_weight=pos_weight)
                loss.backward()

                optimizer.step()
                total_loss += loss.item()
                pbar.set_description('Training, loss={:.4}'.format(loss.item()))

    total_loss = total_loss / len(dataset)
    logger.debug('Training Epoch: {}, Loss: {:.4}.'.format(epoch + 1, total_loss))
    log_value('Training Loss', total_loss, epoch + 1)
Example #2
0
def run_model_on_batch(encoder, decoder, config, use_teacher_forcing,
                       batch_data):
    (x, x_len), (y, y_len) = batch_data

    encoder_output, encoder_hidden = encoder(
        x=maybe_cuda(Variable(x, requires_grad=False), cuda=config.cuda),
        x_len=x_len,
        hidden=None,
    )

    y_var = maybe_cuda(Variable(y, requires_grad=False), cuda=config.cuda)
    target_length = y_var.size()[1]

    decoder_input = maybe_cuda(Variable(torch.LongTensor([[0]] * x.size()[0])),
                               cuda=config.cuda)
    decoder_hidden = encoder_hidden

    decoder_output_ls = []
    attn_ls = []
    for di in range(target_length):
        decoder_output, decoder_hidden, other_dict = decoder(
            decoder_input, decoder_hidden, encoder_output)
        decoder_output_ls.append(decoder_output)
        if "attn" in other_dict:
            attn_ls.append(other_dict["attn"])

        if use_teacher_forcing:
            decoder_input = y_var[:, di].unsqueeze(1)
        else:
            topv, topi = decoder_output.data.topk(1)
            decoder_input = maybe_cuda(Variable(topi.squeeze(1)),
                                       cuda=config.cuda)

    full_decoder_output = torch.cat(decoder_output_ls, dim=1)
    return full_decoder_output, attn_ls
    def max_pooling_similarity_computing(self, doc_output, segment_idx):
        similarities = Variable(maybe_cuda(torch.Tensor([])))
        cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        #ln = nn.LayerNorm(512, elementwise_affine=False)
        seg_outputs = []
        index = 0
        doc_output = F.softmax(doc_output)
        for i, idx in enumerate(segment_idx):
            if i == 0:
                seg_output = doc_output[0:segment_idx[i] + 1, :]
            elif i == len(segment_idx) - 1:
                seg_output = doc_output[segment_idx[i - 1] + 1:, :]
            else:
                seg_output = doc_output[segment_idx[i - 1] + 1:segment_idx[i] +
                                        1, :]
            seg_outputs.append(seg_output)

        maxes = Variable(
            maybe_cuda(torch.zeros(len(seg_outputs), self.hidden * 2)))
        for i in range(len(seg_outputs)):
            maxes[i, :] = torch.max(seg_outputs[i], 0)[0]
            #maxes[i, :] = torch.mean(seg_outputs[i], 0)
        if len(seg_outputs) > 1:
            tensor_1 = maxes[:-1, :]
            tensor_2 = maxes[1:, :]
            similarities = cos(tensor_1, tensor_2)
            #similarity += (tensor_1 * tensor_2).sum()/(tensor_1.size()[0])
            #similarities = torch.diag(torch.mm(tensor_1, tensor_2.permute(1,0)))
        return similarities
Example #4
0
def get_model(config):
    encoder = maybe_cuda(Encoder(config), cuda=config.cuda)
    if config.attn_method != "disabled":
        decoder = maybe_cuda(AttnDecoder(config), cuda=config.cuda)
    else:
        decoder = maybe_cuda(Decoder(config), cuda=config.cuda)
    return encoder, decoder
    def similarity_computing_inner(self, doc_output, segment_idx):
        similarities = []
        cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        seg_outputs = []
        index = 0
        doc_output = F.softmax(doc_output)
        for i, idx in enumerate(segment_idx):
            if i == 0:
                seg_output = doc_output[0:segment_idx[i] + 1, :]
            elif i == len(segment_idx) - 1:
                seg_output = doc_output[segment_idx[i - 1] + 1:, :]
            else:
                seg_output = doc_output[segment_idx[i - 1] + 1:segment_idx[i] +
                                        1, :]
            seg_outputs.append(seg_output)

        for i in range(len(seg_outputs)):
            sent_idx = maybe_cuda(
                torch.LongTensor([k for k in range(seg_outputs[i].size()[0])]))
            if seg_outputs[i].size()[0] > 1:
                pairs = torch.combinations(sent_idx)
                pair_sims = []
                for p in pairs:
                    pair_sims.append(
                        cos(seg_outputs[i][p[0], :].unsqueeze(0),
                            seg_outputs[i][p[1], :].unsqueeze(0)))
                similarities.append(sum(pair_sims) / len(pair_sims))
            else:
                continue

        return Variable(maybe_cuda(torch.Tensor(similarities)))
Example #6
0
def train(model, args, epoch, dataset, logger, optimizer):
    model.train()
    total_loss = float(0)
    with tqdm(desc='Training', total=len(dataset)) as pbar:
        for i, (data, target, paths, sent_bert_vec, target_idx) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break

                pbar.update()
                model.zero_grad()
                output, sims = model(data, sent_bert_vec, target_idx)
                
                target_var = Variable(maybe_cuda(torch.cat(target, 0), args.cuda), requires_grad=False)
                # generate gold label for coherence scores...
                target_list = target_var.data.cpu().numpy()
                target_coh_list = []
                for t in target_list:
                    if t == 0:
                        target_coh_list.append(torch.LongTensor([1]))
                    else:
                        target_coh_list.append(torch.LongTensor([0]))
                target_coh_var = Variable(maybe_cuda(torch.cat(target_coh_list, 0), args.cuda), requires_grad=False)

                loss = supervised_cross_entropy(output, sims, target_var, target_coh_var)
                #loss = model.criterion(output, target_var)
                
                #sim = sim_.data.cpu()
                #total_sim += sim
                #concate_target = torch.cat(target, 0)

                #total_1.append(sum(sim.squeeze(1)[concate_target == 1])/len(sim.squeeze(1)[concate_target == 1]))
                #total_0.append(sum(sim.squeeze(1)[concate_target == 0])/len(sim.squeeze(1)[concate_target == 0]))
                '''
                new_target = torch.zeros(concate_target.size()[0], 2)
                new_target[range(new_target.shape[0]), concate_target]=1
                target_var = Variable(maybe_cuda(new_target, args.cuda), requires_grad=False)
                target_var = target_var.type_as(output)
                pos_weight = maybe_cuda(torch.FloatTensor([0.1, 1.0]))

                loss = F.binary_cross_entropy_with_logits(output, target_var, reduction='sum', pos_weight=pos_weight) + 10*sim_
                '''

                loss.backward()

                optimizer.step()
                total_loss += loss.item()
                # logger.debug('Batch %s - Train error %7.4f', i, loss.data[0])
                pbar.set_description('Training, loss={:.4}'.format(loss.item()))
            # except Exception as e:
                # logger.info('Exception "%s" in batch %s', e, i)
                # logger.debug('Exception while handling batch with file paths: %s', paths, exc_info=True)
                # pass
    #print('The similarity between the segs: ', total_sim/len(dataset))

    total_loss = total_loss / len(dataset)
    logger.debug('Training Epoch: {}, Loss: {:.4}.'.format(epoch + 1, total_loss))
    log_value('Training Loss', total_loss, epoch + 1)
Example #7
0
def validate(model, args, epoch, dataset, logger):
    model.eval()
    with tqdm(desc='Validatinging', total=len(dataset)) as pbar:
        acc = Accuracies()
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break
                pbar.update()
                output = model(data)
                output_softmax = F.softmax(output, 1)
                targets_var = Variable(maybe_cuda(torch.cat(target, 0),
                                                  args.cuda),
                                       requires_grad=False)

                output_seg = output.data.cpu().numpy().argmax(axis=1)
                target_seg = targets_var.data.cpu().numpy()
                preds_stats.add(output_seg, target_seg)

                acc.update(output_softmax.data.cpu().numpy(), target)

            # except Exception as e:
            #     # logger.info('Exception "%s" in batch %s', e, i)
            #     logger.debug('Exception while handling batch with file paths: %s', paths, exc_info=True)
            #     pass

        epoch_pk, epoch_windiff, threshold = acc.calc_accuracy()

        logger.info(
            'Validating Epoch: {}, accuracy: {:.4}, Pk: {:.4}, Windiff: {:.4}, F1: {:.4} . '
            .format(epoch + 1, preds_stats.get_accuracy(), epoch_pk,
                    epoch_windiff, preds_stats.get_f1()))
        preds_stats.reset()

        return epoch_pk, threshold
Example #8
0
    def forward(self, batch, return_attns=False):
        batch_size = len(batch)

        sentences_per_doc = []
        all_batch_sentences = []
        for document in batch:
            all_batch_sentences.extend(document)
            sentences_per_doc.append(len(document))

        lengths = [s.size()[0] for s in all_batch_sentences]
        sort_order = np.argsort(lengths)[::-1]
        sorted_sentences = [all_batch_sentences[i] for i in sort_order]
        sorted_lengths = [s.size()[0] for s in sorted_sentences]

        max_length = max(lengths)
        logger.debug('Num sentences: %s, max sentence length: %s', 
                     sum(sentences_per_doc), max_length)

        padded_sentences = [self.pad(s, max_length) for s in sorted_sentences]
        big_tensor = torch.cat(padded_sentences, 1)  # (max_length, batch size, 300)
        processed_tensor = pack_padded_sequence(big_tensor, sorted_lengths)
        encoded_sentences = self.sentence_encoder(processed_tensor)
        unsort_order = Variable(maybe_cuda(torch.LongTensor(unsort(sort_order))))
        unsorted_encodings = encoded_sentences.index_select(0, unsort_order)

        index = 0
        encoded_documents = []
        for sentences_count in sentences_per_doc:
            end_index = index + sentences_count
            encoded_documents.append(unsorted_encodings[index : end_index, :])
            index = end_index

        doc_sizes = [doc.size()[0] for doc in encoded_documents]
        max_doc_size = np.max(doc_sizes)
        ordered_document_idx = np.argsort(doc_sizes)[::-1]
        ordered_doc_sizes = sorted(doc_sizes)[::-1]
        ordered_documents = [encoded_documents[idx] for idx in ordered_document_idx]
        padded_docs = [self.pad_document(d, max_doc_size) for d in ordered_documents]
        padded_docs = torch.stack(padded_docs).squeeze(2) # turn the tensor list into tensor

        ##############################################################
        pos_emb = self.PositionEncoder.pe[:, :padded_docs.size()[1]].expand(padded_docs.size())
        inputs = padded_docs+pos_emb

        sent_mask = generate_mask(ordered_doc_sizes, max_doc_size)
        non_pad_mask = sent_mask.unsqueeze(-1)
        slf_attn_mask = (1-sent_mask).unsqueeze(1).expand(-1,sent_mask.size()[1],-1).type(torch.bool)

        outputs = self.Transformer(inputs,non_pad_mask, slf_attn_mask)
        outputs = self.Dropoutlayer(outputs)
        outputs = self.Decoderlayer(outputs) # batch * length * 1

        doc_outputs = []
        for i, doc_len in enumerate(ordered_doc_sizes):
            doc_outputs.append(outputs[i, 0:doc_len - 1, :])  # -1 to remove last prediction

        unsorted_doc_outputs = [doc_outputs[i] for i in unsort(ordered_document_idx)]
        x = torch.cat(unsorted_doc_outputs, 0)
        
        return x
Example #9
0
def train(model, args, epoch, dataset, logger, optimizer):
    model.train()
    total_loss = float(0)
    with tqdm(desc='Training', total=len(dataset)) as pbar:
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break

                pbar.update()
                model.zero_grad()
                output = model(data)
                target_var = Variable(maybe_cuda(torch.cat(target, 0),
                                                 args.cuda),
                                      requires_grad=False)
                loss = model.criterion(output, target_var)
                loss.backward()

                optimizer.step()
                # total_loss += loss.data[0]
                total_loss += loss.item()
                # logger.debug('Batch %s - Train error %7.4f', i, loss.data[0])
                pbar.set_description('Training, loss={:.4}'.format(
                    loss.item()))
            # except Exception as e:
            # logger.info('Exception "%s" in batch %s', e, i)
            # logger.debug('Exception while handling batch with file paths: %s', paths, exc_info=True)
            # pass

    total_loss = total_loss / len(dataset)
    logger.debug('Training Epoch: {}, Loss: {:.4}.'.format(
        epoch + 1, total_loss))
    log_value('Training Loss', total_loss, epoch + 1)
Example #10
0
def validate(model, args, epoch, dataset, logger):
    model.eval()
    with tqdm(desc='Validatinging', total=len(dataset)) as pbar:
        acc = Accuracies()
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break
                pbar.update()
                output = model(data)
                output_softmax = F.softmax(output, 1)
                targets_var = Variable(maybe_cuda(torch.cat(target, 0), args.cuda), requires_grad=False)

                output_seg = output.data.cpu().numpy().argmax(axis=1)
                target_seg = targets_var.data.cpu().numpy()
                preds_stats.add(output_seg, target_seg)

                acc.update(output_softmax.data.cpu().numpy(), target)

        epoch_pk, epoch_windiff, threshold = acc.calc_accuracy()

        logger.info('Validating Epoch: {}, Pk: {:.4} . '.format(epoch + 1, epoch_pk))
        preds_stats.reset()

        return epoch_pk, threshold
Example #11
0
def prepare_tensor(sentences):
    tensored_data = []
    for sentence in sentences:
        if len(sentence) > 0:
            tensored_data.append(utils.maybe_cuda(torch.FloatTensor(np.concatenate(sentence))))

    return tensored_data
 def pad(self, s, max_length):
     s_length = s.size()[0]
     v = Variable(maybe_cuda(s.unsqueeze(0).unsqueeze(0)))
     padded = F.pad(
         v, (0, 0, 0, max_length - s_length))  # (1, 1, max_length, 300)
     shape = padded.size()
     return padded.view(shape[2], 1, shape[3])  # (max_length, 1, 300)
Example #13
0
def main(args):
    sys.path.append(str(Path(__file__).parent))

    checkpoint_path = Path(args.checkpoint_dir)
    checkpoint_path.mkdir(exist_ok=True)

    logger = utils.setup_logger(__name__, os.path.join(args.checkpoint_dir, 'train.log'))

    utils.read_config_file(args.config)
    utils.config.update(args.__dict__)
#    logger.debug('Running with config %s', utils.config)

 #   configure(os.path.join('runs', args.expname))

    word2vec = None

    if not args.infer:
        dataset_path = utils.config['choidataset']
        train_dataset = ChoiDataset(dataset_path, word2vec)
        dev_dataset = ChoiDataset(dataset_path, word2vec)
        test_dataset = ChoiDataset(dataset_path, word2vec)

        train_dl = DataLoader(train_dataset, batch_size=args.bs, collate_fn=collate_fn, shuffle=True,
                              num_workers=args.num_workers)
        dev_dl = DataLoader(dev_dataset, batch_size=args.test_bs, collate_fn=collate_fn, shuffle=False,
                            num_workers=args.num_workers)
        test_dl = DataLoader(test_dataset, batch_size=args.test_bs, collate_fn=collate_fn, shuffle=False,
                             num_workers=args.num_workers)

    assert bool(args.model) ^ bool(args.load_from)  # exactly one of them must be set

    if args.model:
        model = import_model(args.model)
    elif args.load_from:
        with open(args.load_from, 'rb') as f:
            model = torch.load(f)

    model.train()
    model = maybe_cuda(model)

    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    if not args.infer:
        best_val_pk = 1.0
        for j in range(args.epochs):
            train(model, args, j, train_dl, logger, optimizer)
            with (checkpoint_path / 'model{:03d}.t7'.format(j)).open('wb') as f:
                torch.save(model, f)

            val_pk, threshold = validate(model, args, j, dev_dl, logger)
            if val_pk < best_val_pk:
                test_pk = test(model, args, j, test_dl, logger, threshold)
                logger.debug(
                    colored(
                        'Current best model from epoch {} with p_k {} and threshold {}'.format(j, test_pk, threshold),
                        'green'))
                best_val_pk = val_pk
                with (checkpoint_path / 'Meilleur_model.t7'.format(j)).open('wb') as f:
                    torch.save(model, f)
	def resnet_init(self):
		end_time = time.time()
		from utils import maybe_cuda
		from glico_model.img_to_vec import Img2Vec
		img2vec = Img2Vec()
		# Matrix to hold the image vectors
		for i_loader, dloader in enumerate(self.data_loader):
			for i, batch in enumerate(dloader):  # batch_size=1, no shuffle
				idx = maybe_cuda(batch[0])
				imgs = maybe_cuda(batch[1])
				labels = batch[2]
				if i_loader < 1:
					vec = img2vec.get_vec(imgs.squeeze().detach().cpu().numpy())
					self.emb.weight.data[idx] = torch.tensor(vec)
					self.label2idx[labels.item()].add(idx.item())
			self.idx2label[idx.item()] = labels.item()
		self.get_norm()
		print(f"init time: {(time.time() - end_time) / 60:8.2f}m")
Example #15
0
    def forward(self, batch):
        batch_size = len(batch)
        sentences_per_doc = []
        all_batch_sentences = []
        for document in batch:
            all_batch_sentences.extend(document)
            sentences_per_doc.append(len(document))
        lengths = [s.size()[0] for s in all_batch_sentences]
        sort_order = np.argsort(lengths)[::-1]
        sorted_sentences = [all_batch_sentences[i] for i in sort_order]
        sorted_lengths = [s.size()[0] for s in sorted_sentences]
        max_length = max(lengths)
        logger.debug('Num sentences: %s, max sentence length: %s',
                     sum(sentences_per_doc), max_length)
        padded_sentences = [self.pad(s, max_length) for s in sorted_sentences]
        big_tensor = torch.cat(padded_sentences,
                               1)  # (max_length, batch size, 300)
        packed_tensor = pack_padded_sequence(big_tensor, sorted_lengths)
        encoded_sentences = self.sentence_encoder(packed_tensor)
        unsort_order = torch.tensor(
            maybe_cuda(torch.LongTensor(unsort(sort_order))))
        unsorted_encodings = encoded_sentences.index_select(0, unsort_order)

        index = 0
        encoded_documents = []
        for sentences_count in sentences_per_doc:
            end_index = index + sentences_count
            encoded_documents.append(unsorted_encodings[index:end_index, :])
            index = end_index

        doc_sizes = [doc.size()[0] for doc in encoded_documents]
        max_doc_size = np.max(doc_sizes)
        ordered_document_idx = np.argsort(doc_sizes)[::-1]
        ordered_doc_sizes = sorted(doc_sizes)[::-1]
        ordered_documents = [
            encoded_documents[idx] for idx in ordered_document_idx
        ]
        padded_docs = [
            self.pad_document(d, max_doc_size) for d in ordered_documents
        ]
        docs_tensor = torch.cat(padded_docs, 1)
        packed_docs = pack_padded_sequence(docs_tensor, ordered_doc_sizes)
        sentence_lstm_output, _ = self.sentence_lstm(
            packed_docs, zero_state(self, batch_size=batch_size))
        padded_x, _ = pad_packed_sequence(
            sentence_lstm_output)  # (max sentence len, batch, 256)
        doc_outputs = []
        for i, doc_len in enumerate(ordered_doc_sizes):
            doc_outputs.append(padded_x[0:doc_len - 1,
                                        i, :])  # -1 to remove last prediction
        unsorted_doc_outputs = [
            doc_outputs[i] for i in unsort(ordered_document_idx)
        ]
        sentence_outputs = torch.cat(unsorted_doc_outputs, 0)
        x = self.h2s(sentence_outputs)
        return x
Example #16
0
 def forward(self, x):
     batch_size = x.batch_sizes[0]
     s = zero_state(self, batch_size)
     packed_output, _ = self.lstm(x, s)
     padded_output, lengths = pad_packed_sequence(
         packed_output)  # (max sentence len, batch, 256)
     maxes = torch.tensor(
         maybe_cuda(torch.zeros(batch_size, padded_output.size(2))))
     for i in range(batch_size):
         maxes[i, :] = torch.max(padded_output[:lengths[i], i, :], 0)[0]
     return maxes
	def cube_init(self):
		import itertools
		from utils import maybe_cuda
		end_time = time.time()
		vertices = itertools.product('01', repeat=self.nz)  # cartesian product
		# self.vertices = [tuple(int(s) for s in v) for v in vertices]
		self.vertices = sample_from_iter(vertices, self.num_classes)
		print(f"Init Cube: num classes= {self.num_classes}")
		for i_loader, dloader in enumerate(self.data_loader):
			for i, batch in enumerate(dloader):  # batch_size=1, no shuffle
				idx = maybe_cuda(batch[0])
				_ = maybe_cuda(batch[1])
				labels = batch[2]
				if i_loader < 1:
					vertex = self.vertices[labels]
					self.emb.weight.data[idx] = self.emb.weight.data[idx] + torch.tensor(vertex).float()
					self.label2idx[labels.item()].add(idx.item())
				self.idx2label[idx.item()] = labels.item()
		self.get_norm()
		print(f"init time: {(time.time() - end_time) / 60:8.2f}m")
Example #18
0
def get_attn_key_pad_mask(seq_k, seq_q, lengths):
    ''' For masking out the padding part of key sequence. '''

    # Expand to fit the shape of key query attention matrix.
    batch, len_q, len_k = seq_k.size(0), seq_q.size(1), seq_k.size(1)
    padding_mask = maybe_cuda(torch.ByteTensor([[0 if i<clen else 1 for i in range(len_k) ] for clen in lengths]) )
    padding_mask = padding_mask.unsqueeze(1).expand(-1, len_q, -1)  # b x lq x lk
    # len_q = seq_q.size(1)
    # padding_mask = seq_k.eq(Constants.PAD)
    # padding_mask = padding_mask.unsqueeze(1).expand(-1, len_q, -1)  # b x lq x lk

    return padding_mask
Example #19
0
def load_model(model_path=None, is_cuda=None):
    if model_path is None:
        model_path = utils.config['model']

    with open(model_path, 'r') as f:
        model = torch.load(f)

    model.eval()
    if is_cuda is None:
        is_cuda = utils.config['cuda']

    return utils.maybe_cuda(model, is_cuda)
Example #20
0
def test(model, args, epoch, dataset, logger, threshold):
    model.eval()
    with tqdm(desc='Testing', total=len(dataset)) as pbar:
        acc = accuracy.Accuracy()
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break
                pbar.update()
                output = model(data)
                output_softmax = F.softmax(output, 1)
                targets_var = Variable(maybe_cuda(torch.cat(target, 0),
                                                  args.cuda),
                                       requires_grad=False)
                output_seg = output.data.cpu().numpy().argmax(axis=1)
                target_seg = targets_var.data.cpu().numpy()
                preds_stats.add(output_seg, target_seg)

                current_idx = 0

                for k, t in enumerate(target):
                    document_sentence_count = len(t)
                    to_idx = int(current_idx + document_sentence_count)

                    output = ((output_softmax.data.cpu().numpy()[
                        current_idx:to_idx, :])[:, 1] > threshold)
                    h = np.append(output, [1])
                    tt = np.append(t, [1])

                    acc.update(h, tt)

                    current_idx = to_idx

                    # acc.update(output_softmax.data.cpu().numpy(), target)

            #
            # except Exception as e:
            #     # logger.info('Exception "%s" in batch %s', e, i)
            #     logger.debug('Exception while handling batch with file paths: %s', paths, exc_info=True)

        epoch_pk, epoch_windiff = acc.calc_accuracy()

        logger.debug(
            'Testing Epoch: {}, accuracy: {:.4}, Pk: {:.4}, Windiff: {:.4}, F1: {:.4} . '
            .format(epoch + 1, preds_stats.get_accuracy(), epoch_pk,
                    epoch_windiff, preds_stats.get_f1()))
        preds_stats.reset()

        return epoch_pk
def accuracy(model, test_data, batch_size, topk=(1, 5), aug_param=None):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    model.eval()
    if aug_param is None:
        aug_param = {
            'std': None,
            'mean': None,
            'rand_crop': 32,
            'image_size': 32
        }
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    with torch.no_grad():
        test_loader = get_loader_with_idx(test_data,
                                          batch_size=batch_size,
                                          **aug_param,
                                          num_workers=8,
                                          shuffle=False,
                                          eval=True)
        for i, batch in enumerate(test_loader):
            imgs = maybe_cuda(batch[1])
            targets = maybe_cuda(batch[2])
            output = maybe_cuda(model(imgs))
            maxk = max(topk)
            batch_size = targets.size(0)
            # target = validate_loader_consistency(batch_size, idx, target, test_data)
            _, pred = output.topk(maxk, 1, True, True)
            pred = pred.t()
            correct = pred.eq(targets.view(1, -1).expand_as(pred))
            res = []
            for k in topk:
                correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
                res.append(correct_k.mul_(100.0 / batch_size))
            top1.update(res[0].item())
            top5.update(res[1].item())
    return top1.avg, top5.avg
def main(args):
    sys.path.append(str(Path(__file__).parent))

    logger = utils.setup_logger(__name__,  'cross_validate_choi.log')

    utils.read_config_file(args.config)
    utils.config.update(args.__dict__)
    logger.debug('Running with config %s', utils.config)

    configure(os.path.join('runs', args.expname))

    if not args.test:
        word2vec = gensim.models.KeyedVectors.load_word2vec_format(utils.config['word2vecfile'], binary=True)
    else:
        word2vec = None


    dataset_path = Path(args.flat_choi)

    with open(args.load_from, 'rb') as f:
        model = torch.load(f)
    model.eval()
    model = maybe_cuda(model)

    test_accuracy = accuracy.Accuracy()

    for j in range(5):
        validate_folder_numbers = range(5)
        validate_folder_numbers.remove(j)
        validate_folder_names = [dataset_path.joinpath(str(num)) for num in validate_folder_numbers]
        dev_dataset = ChoiDataset(dataset_path , word2vec, folder=True, folders_paths=validate_folder_names)
        test_dataset = ChoiDataset(dataset_path, word2vec, folder=True, folders_paths=[dataset_path.joinpath(str(j))])

        dev_dl = DataLoader(dev_dataset, batch_size=args.test_bs, collate_fn=collate_fn, shuffle=False,
                            num_workers=args.num_workers)
        test_dl = DataLoader(test_dataset, batch_size=args.test_bs, collate_fn=collate_fn, shuffle=False,
                             num_workers=args.num_workers)

        _, threshold = validate(model, args, j, dev_dl, logger)
        test_pk = test(model, args, j, test_dl, logger, threshold, test_accuracy)
        logger.debug(colored('Cross validation section {} with p_k {} and threshold {}'.format(j, test_pk, threshold),'green'))

    cross_validation_pk, _ = test_accuracy.calc_accuracy()
    print ('Final cross validaiton Pk is: ' + str(cross_validation_pk))
    logger.debug(
        colored('Final cross validaiton Pk is: {}'.format(cross_validation_pk), 'green'))
Example #23
0
    def validate_step(engine, batch):
        encoder.eval()
        decoder.eval()

        (x, x_len), (y, y_len) = batch
        full_decoder_output, attn_ls = run_model_on_batch(
            encoder=encoder,
            decoder=decoder,
            config=config,
            use_teacher_forcing=False,
            batch_data=batch,
        )

        y_var = maybe_cuda(Variable(y, requires_grad=False), cuda=config.cuda)

        batch_loss = criterion(
            full_decoder_output.view(-1,
                                     full_decoder_output.size()[2]),
            y_var.view(-1))
        return batch_loss
Example #24
0
 def __init__(self,
              len_max_seq,
              d_word_vec,
              n_layers,
              n_head,
              d_k,
              d_v,
              d_model,
              d_inner,
              dropout=0.1):
     super(SentenceEncoding, self).__init__()
     self.CLS = maybe_cuda(torch.randn(1, 300))
     n_position = len_max_seq + 1
     self.d_model = d_model
     self.src_emb = nn.Linear(300, d_model)
     self.position_enc = nn.Embedding.from_pretrained( \
         get_sinusoid_encoding_table(n_position, d_word_vec), \
         freeze=True)
     self.layers = nn.ModuleList([ \
         EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout) for _ in range(n_layers)])
     self.dropout_func = nn.Dropout(dropout)
def test(model, args, epoch, dataset, logger, test_threshold, test_acc):
    model.eval()
    with tqdm(desc='Testing', total=len(dataset)) as pbar:
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break
                pbar.update()
                output = model(data)
                output_softmax = F.softmax(output, 1)
                targets_var = Variable(maybe_cuda(torch.cat(target, 0), args.cuda), requires_grad=False)
                output_seg = output.data.cpu().numpy().argmax(axis=1)
                target_seg = targets_var.data.cpu().numpy()
                preds_stats.add(output_seg, target_seg)

                current_idx = 0

                for k, t in enumerate(target):
                    document_sentence_count = len(t)
                    to_idx = int(current_idx + document_sentence_count)

                    output = ((output_softmax.data.cpu().numpy()[current_idx: to_idx, :])[:, 1] > test_threshold)
                    h = np.append(output, [1])
                    tt = np.append(t, [1])

                    test_acc.update(h, tt)

                    current_idx = to_idx

        test_pk, epoch_windiff = test_acc.calc_accuracy()

        logger.debug('Testing validation section: {}, accuracy: {:.4}, Pk: {:.4}, Windiff: {:.4}, F1: {:.4} . '.format(epoch + 1,
                                                                                                          preds_stats.get_accuracy(),
                                                                                                          test_pk,
                                                                                                          epoch_windiff,
                                                                                                          preds_stats.get_f1()))
        preds_stats.reset()

        return test_pk
Example #26
0
    def forward(self, src_seq, max_length, lengths, return_attns=False):

        enc_slf_attn_list = []

        # -- Prepare masks
        slf_attn_mask = get_attn_key_pad_mask(seq_k=src_seq, seq_q=src_seq, lengths=lengths)
        non_pad_mask = get_non_pad_mask(src_seq, lengths)
        position = maybe_cuda(torch.tensor([[i if i<clen else 0 for i in range(max_length) ] for clen in lengths]) )
        # -- Forward
        enc_output = src_seq + self.position_enc(position)

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(
                enc_output,
                non_pad_mask=non_pad_mask,
                slf_attn_mask=slf_attn_mask)
            if return_attns:
                enc_slf_attn_list += [enc_slf_attn]

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output
Example #27
0
def train(model, args, epoch, dataset, logger, optimizer):
    model.train()
    total_loss = float(0)
    with tqdm(desc='Training', total=len(dataset)) as pbar:
        for i, (data, target, paths) in enumerate(dataset):
            if True  :
                if i == args.stop_after:
                    break

                pbar.update()
                model.zero_grad()
                output = model(data)
                target_var = Variable(maybe_cuda(torch.cat(target, 0), args.cuda), requires_grad=False)
                loss = model.criterion(output, target_var)
                loss.backward()

                optimizer.step()
               	# total_loss += loss.data
                total_loss += float(loss.item())
              #  pbar.set_description('Training : LOSS = {:.4}'.format(float(loss.item())))
                torch.cuda.empty_cache()
                del data, target, output, target_var, loss
                gc.collect()
Example #28
0
def test(model, args, epoch, dataset, logger, threshold):
    model.eval()
    with tqdm(desc='Testing', total=len(dataset)) as pbar:
        acc = Accuracy() # accuracies class is not needed
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break
                pbar.update()
                output = model(data)
                output_softmax = F.softmax(output, 1)
                targets_var = torch.tensor(maybe_cuda(torch.cat(target, 0), args.cuda), requires_grad=False)
                output_seg = output.data.cpu().numpy().argmax(axis=1)
                target_seg = targets_var.data.cpu().numpy()
                preds_stats.add(output_seg, target_seg)
                current_idx = 0
                for k, t in enumerate(target):
                    path = paths[k]
                    document_sentence_count = len(t)
                    to_idx = int(current_idx + document_sentence_count)
                    output = ((output_softmax.data.cpu().numpy()[current_idx: to_idx, :])[:, 1] > threshold)
                    h = np.append(output, [1])
                    tt = np.append(t, [1])
                    acc.update(h, tt, path)
                    current_idx = to_idx
        epoch_pk, epoch_windiff, epoch_b, epoch_s = acc.calc_accuracy()
        logger.info('Testing Epoch: {}, accuracy: {:.4}, Pk: {:.4}, Windiff: {:.4}, B: {:.4}, S: {:.4} ,F1: {:.4} . '.format(
                                                                                                    epoch + 1,
                                                                                                    preds_stats.get_accuracy(),
                                                                                                    epoch_pk,
                                                                                                    epoch_windiff,
                                                                                                    epoch_b,
                                                                                                    epoch_s,
                                                                                                    preds_stats.get_f1()))
        preds_stats.reset()
        epoch_result = acc.all_test_result
        return epoch_pk, epoch_result
Example #29
0
    def train_step(engine, batch):
        encoder.train()
        decoder.train()
        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()

        (x, x_len), (y, y_len) = batch
        full_decoder_output, attn_ls = run_model_on_batch(
            encoder=encoder,
            decoder=decoder,
            config=config,
            use_teacher_forcing=use_teacher_forcing,
            batch_data=batch,
        )

        y_var = maybe_cuda(Variable(y, requires_grad=False), cuda=config.cuda)
        batch_loss = criterion(
            full_decoder_output.view(-1,
                                     full_decoder_output.size()[2]),
            y_var.view(-1))
        batch_loss.backward()
        encoder_optimizer.step()
        decoder_optimizer.step()
        return batch_loss
Example #30
0
def train(model, args, epoch, dataset, logger, optimizer):
    model.train()
    total_loss = float(0)
    with tqdm(desc='Training', total=len(dataset)) as pbar:
        for i, (data, target, paths) in enumerate(dataset):
            if True:
                if i == args.stop_after:
                    break
                pbar.update()
                model.zero_grad()
                output = model(data)
                target_var = torch.tensor(maybe_cuda(torch.cat(target, 0),
                                                     args.cuda),
                                          requires_grad=False)
                loss = model.criterion(output, target_var)
                loss.backward()
                optimizer.step()
                total_loss += loss.item()
                pbar.set_description('Training, loss={:.4}'.format(
                    loss.item()))
    total_loss = total_loss / len(dataset)
    logger.debug('Training Epoch: {}, Loss: {:.4}.'.format(
        epoch + 1, total_loss))
    log_value('Training Loss', total_loss, epoch + 1)