Example #1
0
 def norm_adj(adj_to_norm):
     return normalize_nonsym_adj(adj_to_norm)
    },
}

if not os.path.exists(SUMMARIESDIR):
    os.makedirs(SUMMARIESDIR)

train_support = get_degree_supports(adj_train, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
val_support = get_degree_supports(adj_val, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
test_support = get_degree_supports(adj_test, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
if DATASET != 'amazon':
    q_support = get_degree_supports(adj_q, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
if DATASET == 'polyvore':
    res_q_support = get_degree_supports(res_adj_q, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)

for i in range(1, len(train_support)):
    train_support[i] = normalize_nonsym_adj(train_support[i])
    val_support[i] = normalize_nonsym_adj(val_support[i])
    test_support[i] = normalize_nonsym_adj(test_support[i])
    if DATASET != 'amazon':
        q_support[i] = normalize_nonsym_adj(q_support[i])
    if DATASET == 'polyvore':
        res_q_support[i] = normalize_nonsym_adj(res_q_support[i])    

num_support = len(train_support)
placeholders = {
    'row_indices': tf.placeholder(tf.int32, shape=(None,)),
    'col_indices': tf.placeholder(tf.int32, shape=(None,)),
    'dropout': tf.placeholder_with_default(0., shape=()),
    'weight_decay': tf.placeholder_with_default(0., shape=()),
    'is_train': tf.placeholder_with_default(True, shape=()),
    'support': [tf.sparse_placeholder(tf.float32, shape=(None, None)) for sup in range(num_support)],