def norm_adj(adj_to_norm): return normalize_nonsym_adj(adj_to_norm)
}, } if not os.path.exists(SUMMARIESDIR): os.makedirs(SUMMARIESDIR) train_support = get_degree_supports(adj_train, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS) val_support = get_degree_supports(adj_val, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS) test_support = get_degree_supports(adj_test, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS) if DATASET != 'amazon': q_support = get_degree_supports(adj_q, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS) if DATASET == 'polyvore': res_q_support = get_degree_supports(res_adj_q, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS) for i in range(1, len(train_support)): train_support[i] = normalize_nonsym_adj(train_support[i]) val_support[i] = normalize_nonsym_adj(val_support[i]) test_support[i] = normalize_nonsym_adj(test_support[i]) if DATASET != 'amazon': q_support[i] = normalize_nonsym_adj(q_support[i]) if DATASET == 'polyvore': res_q_support[i] = normalize_nonsym_adj(res_q_support[i]) num_support = len(train_support) placeholders = { 'row_indices': tf.placeholder(tf.int32, shape=(None,)), 'col_indices': tf.placeholder(tf.int32, shape=(None,)), 'dropout': tf.placeholder_with_default(0., shape=()), 'weight_decay': tf.placeholder_with_default(0., shape=()), 'is_train': tf.placeholder_with_default(True, shape=()), 'support': [tf.sparse_placeholder(tf.float32, shape=(None, None)) for sup in range(num_support)],