def __getitem__(self, i): # Index the fname and slice using the list created in __init__ fname, slice = self.examples[i] t1_path = os.path.join(self.t1_dir, fname) flair_path = os.path.join(self.flair_dir, fname) with h5py.File(flair_path, 'r') as data: flair_img = data[self.key_img][:, :, slice] flair_kspace = data[self.key_kspace][:, :, slice] flair_kspace = npComplexToTorch(flair_kspace) flair_target = data['volfs'][:, :, slice].astype(np.float64) with h5py.File(t1_path, 'r') as data: t1_img = data[self.key_img][:, :, slice] t1_kspace = data[self.key_kspace][:, :, slice] t1_kspace = npComplexToTorch(t1_kspace) t1_target = data['volfs'][:, :, slice].astype(np.float64) return torch.from_numpy(flair_img), flair_kspace, torch.from_numpy( t1_img), t1_kspace, torch.from_numpy( flair_target), torch.from_numpy(t1_target), fname, slice
def __getitem__(self, i): # Index the fname and slice using the list created in __init__ fname, slice = self.examples[i] #print (fname) # Print statements #print (type(fname),slice) with h5py.File(fname, 'r') as data: input_img = data[self.key_img][:,:,slice] input_kspace = data[self.key_kspace][:,:,slice] input_kspace = npComplexToTorch(input_kspace) target = data['volfs'][:,:,slice] #kspace_cmplx = np.fft.fft2(target,norm='ortho') #uskspace_cmplx = kspace_cmplx * self.mask #zf_img = np.abs(np.fft.ifft2(uskspace_cmplx,norm='ortho')) #if self.dataset_type == 'cardiac': if False: # Cardiac dataset should be padded,150 becomes 160. # this can be commented for kirby brain input_img = np.pad(input_img,(5,5),'constant',constant_values=(0,0)) target = np.pad(target,(5,5),'constant',constant_values=(0,0)) # Print statements #print (input.shape,target.shape) return torch.from_numpy(input_img), input_kspace, torch.from_numpy(target),str(fname.name),slice
def __getitem__(self, i): fname = self.examples[i] with h5py.File(fname, 'r') as data: input_img = data[self.key_img].value input_kspace = data[self.key_kspace].value input_kspace = npComplexToTorch(input_kspace) target = data['volfs'].value return torch.from_numpy(input_img), input_kspace, torch.from_numpy(target),str(fname.name)
def __getitem__(self, i): fpath, slice, context = self.examples[i] with h5py.File(fpath, 'r') as data: img = data[self.key_img][:, :, slice] kspace = data[self.key_kspace][:, :, slice] kspace = npComplexToTorch(kspace) target = data['volfs'][:, :, slice].astype(np.float64) return torch.from_numpy(img), kspace, torch.from_numpy( target), fpath, slice, context
def __getitem__(self, i): # Index the fname and slice using the list created in __init__ fname, slice = self.examples[i] data_path = os.path.join(self.data_dir, fname) with h5py.File(data_path, 'r') as data: img = data[self.key_img][:, :, slice] kspace = data[self.key_kspace][:, :, slice] kspace = npComplexToTorch(kspace) target = data['volfs'][:, :, slice].astype(np.float64) return torch.from_numpy(img), kspace, torch.from_numpy( target), fname, slice