Example #1
0
def get_all_objs():
    a, img_work = utils.take_workspace_img(client)
    img_work = utils.standardize_img(img_work)

    if not a:
        a, img_work = debug_markers(img_work)
        return img_work, None
    mask = utils.objs_mask(img_work)
    objs = utils.extract_objs(img_work, mask)
    if len(objs) == 0:
        return img_work, []
    imgs = []
    if model is None:
        return img_work, objs
    for x in range(len(objs)):
        imgs.append(cv2.resize(objs[x].img, (64, 64)))

    imgs = np.array(imgs)
    predictions = model.predict(imgs)
    for x in range(len(predictions)):
        obj = objs[x]
        obj.type = predictions[x].argmax()

        # graphical debug
        cv2.drawContours(img_work, [obj.box], 0, (0, 0, 255), 2)
        pos = [obj.x + 20, obj.y]

        # Text position
        img_work = cv2.putText(img_work, objects_names[obj.type], tuple(pos), font, 0.5, (255, 0, 0), 1, cv2.LINE_AA)
        pos[0] += img_work.shape[0]
        img_work = cv2.putText(img_work, objects_names[obj.type], tuple(pos), font, 0.5, (0, 255, 0), 1, cv2.LINE_AA)

    return img_work, objs
Example #2
0
def labelling(client, name):
    try:
        os.mkdir("./data/" + name)
    except:
        pass
    print("label ", name)
    a, img_work = utils.take_workspace_img(client, 1.5)

    mask = utils.objs_mask(img_work)

    debug = concat_imgs([img_work, mask], 1)
    if __name__ == '__main__':
        show_img("robot view", debug, wait_ms=1)
    objs = utils.extract_objs(img_work, mask)
    if len(objs) != 0:
        print(str(len(objs)) + " object detected")
        objs[0].img = resize_img(objs[0].img, width=64, height=64)
        if __name__ == '__main__':
            show_img("robot view2", img_work, wait_ms=50)
        print("saved", name)
        cv2.imwrite("./data/" + name + "/" + str(time.time()) + ".jpg",
                    img_work)
    else:
        print(str(len(objs)) + " object detected")
    return img_work
Example #3
0
def load_dataset(data_path):

    #list all directories in data_path
    objects_names = os.listdir(data_path)
    print(objects_names)

    objects_list = []  #list containing all objects images
    labels_list = []  #list containing all objects Labels
    files_names = []  #list containing all objects names
    obj_id = 0

    #make the data_mask directorie
    try:
        os.mkdir("./data_mask1")
    except:
        pass

    for name in objects_names:
        # list all image for each objects
        list_dir = os.listdir(data_path + name)

        print(name + " " + str(len(list_dir)))
        # make a "data_mask/<obj_name>" subdirectory for each object
        try:
            os.mkdir("./data_mask1/" + name)
        except:
            pass

        #for each file in in "data/<obj_name>""
        for file_name in list_dir:
            # read the file
            img = cv2.imread(data_path + name + "/" + file_name)
            # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            img = utils.standardize_img(img)
            # extract all objects from the image
            mask = utils.objs_mask(img)
            objs = utils.extract_objs(img, mask)

            #for each object in the image
            for x in range(0, len(objs)):
                img = objs[x].img

                #write the image in data_mask/<file_name>"
                cv2.imwrite(
                    "data_mask1/" + name + "/" + str(x) + "_" + file_name, img)

                #resize the image to match our model input
                img = cv2.resize(img, (64, 64))

                #create a numpy  array of float with a size of (64, 64, 3)
                img_float = np.zeros((64, 64, 3), np.float32)

                #scale the image color between 0.0 and 1.0 and copy it in the numpy array
                img_float[:][:][:] = img[:][:][:] / 255.0

                #create a numpy array full of 0 with a shape of (len(objects_names))
                label = np.zeros((len(objects_names)), np.float32)

                #set is corresponding id to 1
                label[obj_id] = 1

                #insert all our numpy array in the data set

                objects_list.append(img_float)
                labels_list.append(label)
                files_names.append(str(x) + "_" + file_name)

            print(len(objs), end='')
            print("|", end="", flush=True)
        print("")
        obj_id += 1

    return [objects_list, labels_list, files_names, objects_names]
Example #4
0
client.change_tool(RobotTool.GRIPPER_2)


while 1:
    #move to observation_pose
    client.move_pose(*observation_pose.to_list())
    a = False

    #take a picture of the workspace (infinite loop if the robot can't see the workspace)
    while not a:
        a, img_work = utils.take_workspace_img(client)

    img_work = utils.standardize_img(img_work)

    #calculate the mask for img_work (black and white image)
    mask = utils.objs_mask(img_work)
    #aply the mask to the image
    img_masked = cv2.bitwise_and(img_work, img_work, mask=mask)

    img_db = concat_imgs([img_work, mask, img_masked], 1)

    #get all opbject from the image
    objs = utils.extract_objs(img_work, mask)
    if len(objs) == 0:
        continue

    imgs = []
    #resize all objects img to 64*64 pixels
    for x in range(len(objs)):
        imgs.append(resize_img(objs[x].img, width=64, height=64))