Example #1
0
def get_flownet_feature(concat_inputs, trainable=True):
    with tf.variable_scope('FlowNetS'):
        with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
                            # Only backprop this network if trainable
                            trainable=trainable,
                            # He (aka MSRA) weight initialization
                            weights_initializer=slim.variance_scaling_initializer(),
                            activation_fn=LeakyReLU,
                            # We will do our own padding to match the original Caffe code
                            padding='VALID'):

            weights_regularizer = slim.l2_regularizer(LONG_SCHEDULE['weight_decay'])
            with slim.arg_scope([slim.conv2d], weights_regularizer=weights_regularizer):
                with slim.arg_scope([slim.conv2d], stride=2):
                    conv_1 = slim.conv2d(pad(concat_inputs, 3), 64, 7, scope='conv1')
                    conv_2 = slim.conv2d(pad(conv_1, 2), 128, 5, scope='conv2')
                    conv_3 = slim.conv2d(pad(conv_2, 2), 256, 5, scope='conv3')

                conv3_1 = slim.conv2d(pad(conv_3), 256, 3, scope='conv3_1')
                with slim.arg_scope([slim.conv2d], num_outputs=512, kernel_size=3):
                    conv4 = slim.conv2d(pad(conv3_1), stride=2, scope='conv4')
                    conv4_1 = slim.conv2d(pad(conv4), scope='conv4_1')
                    conv5 = slim.conv2d(pad(conv4_1), stride=2, scope='conv5')
                    conv5_1 = slim.conv2d(pad(conv5), scope='conv5_1')
                conv6 = slim.conv2d(pad(conv5_1), 1024, 3, stride=2, scope='conv6')
                conv6_1 = slim.conv2d(pad(conv6), 1024, 3, scope='conv6_1')
    shape = conv6_1.shape.as_list()
    conv6_1 = tf.reshape(conv6_1, [-1, shape[-3]*shape[-2]*shape[-1]])
    return conv6_1
Example #2
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    # Copy matches array, to avoid overwriting it
    orig_matches = matches.copy()
    matches = matches.copy()

    N = matches.shape[0]
    print(N)
    n_samples = int(N * 0.2)

    p_matched1 = pad(keypoints1[matches[:, 0]])
    p_matched2 = pad(keypoints2[matches[:, 1]])

    matched1 = keypoints1[matches[:, 0]]
    matched2 = keypoints2[matches[:, 1]]

    max_inliers = np.zeros(N)
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    for i in range(n_iters):
        rand_indices = np.random.randint(0, N, (n_samples, ))
        rand_matched1 = matched1[rand_indices]
        rand_matched2 = matched2[rand_indices]

        H_est = fit_affine_matrix(rand_matched1, rand_matched2)
        inliers = np.sqrt(
            ((p_matched2.dot(H_est) - p_matched1)**2).sum(axis=-1)) < threshold

        curr_n_inliers = np.count_nonzero(inliers)

        if curr_n_inliers > n_inliers:
            n_inliers = curr_n_inliers
            max_inliers = inliers

    H = fit_affine_matrix(matched1[max_inliers], matched2[max_inliers])
    ### END YOUR CODE
    print(H)
    return H, orig_matches[max_inliers]
Example #3
0
def fit_affine_matrix(p1, p2):
    """ Fit affine matrix such that p2 * H = p1 
    
    Hint:
        You can use np.linalg.lstsq function to solve the problem. 
        
    Args:
        p1: an array of shape (M, P)
        p2: an array of shape (M, P)
        
    Return:
        H: a matrix of shape (P * P) that transform p2 to p1.
    """

    assert (p1.shape[0] == p2.shape[0]),\
        'Different number of points in p1 and p2'
    p1 = pad(p1)
    p2 = pad(p2)

    #####################################
    #       START YOUR CODE HERE        #
    #####################################

    H = np.linalg.lstsq(p2, p1, rcond=None)[0]

    ######################################
    #        END OF YOUR CODE            #
    ######################################

    # Sometimes numerical issues cause least-squares to produce the last
    # column which is not exactly [0, 0, 1]
    H[:, 2] = np.array([0, 0, 1])
    return H
Example #4
0
def fit_affine_matrix(p1, p2):
    """ Fit affine matrix such that p2 * H = p1 
    
    Hint:
        You can use np.linalg.lstsq function to solve the problem. 
        
    Args:
        p1: an array of shape (M, P)
        p2: an array of shape (M, P)
        
    Return:
        H: a matrix of shape (P * P) that transform p2 to p1.
    """

    assert (p1.shape[0] == p2.shape[0]),\
        'Different number of points in p1 and p2'
    p1 = pad(p1)
    p2 = pad(p2)

    ### YOUR CODE HERE

    H, _, _, _ = np.linalg.lstsq(p2, p1)

    ### END YOUR CODE

    H[:, 2] = np.array([0, 0, 1])
    return H
Example #5
0
def make_dnn_feats(fpath, noise_path, snr, P, maxlen=1339):
    speech = read(fpath)
    noise = read(noise_path)
    noise = pad_noise(speech, noise)
    blend = generate_noisy(speech, noise, snr)

    mel_clean = librosa.feature.melspectrogram(y=speech,
                                               sr=16000,
                                               n_fft=512,
                                               hop_length=256,
                                               n_mels=64)
    mel_noisy = librosa.feature.melspectrogram(y=blend,
                                               sr=16000,
                                               n_fft=512,
                                               hop_length=256,
                                               n_mels=64)

    feats = pad(window(mel_noisy, P), maxlen).T
    target = np.log(mel_clean)
    mask = pad(np.ones((target.shape[0], target.shape[1])), maxlen).T
    target = pad(target, maxlen).T
    return {
        'x': torch.tensor(feats),
        't': torch.tensor(target),
        'mask': torch.tensor(mask)
    }
Example #6
0
def fit_affine_matrix(p1, p2):
    """ Fit affine matrix such that p2 * H = p1

    Hint:
        You can use np.linalg.lstsq function to solve the problem.

    Args:
        p1: an array of shape (M, P)
        p2: an array of shape (M, P)

    Return:
        H: a matrix of shape (P, P) that transform p2 to p1.
    """

    assert (p1.shape[0] == p2.shape[0]),\
        'Different number of points in p1 and p2'
    p1 = pad(p1)
    p2 = pad(p2)

    ### YOUR CODE HERE
    #np.linalg.lstsq参考以下文档:https://numpy.org/devdocs/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
    H, r, rank, s = np.linalg.lstsq(p2, p1, rcond=None)
    pass
    ### END YOUR CODE

    # Sometimes numerical issues cause least-squares to produce the last
    # column which is not exactly [0, 0, 1]
    H[:, 2] = np.array([0, 0, 1])
    return H
Example #7
0
def _process(agent_skill, data):
    # TODO: this could be more efficient
    sub_skill_names = [None] + [
        sub_skill.skill_name for sub_skill in agent_skill.sub_skills
    ]
    iput = np.asarray([
        utils.pad(step.arg, agent_skill.skill_model.arg_in_len) + [step.cnt] +
        utils.one_hot(sub_skill_names.index(step.ret_name),
                      agent_skill.skill_model.num_sub) +
        utils.pad(step.ret_val, agent_skill.skill_model.ret_in_len)
        for step in data
    ])
    sub = np.asarray([sub_skill_names.index(step.sub_name) for step in data])
    arg = np.asarray([
        utils.pad(step.sub_arg, agent_skill.skill_model.arg_out_len)
        for step in data
    ])
    return DictTree(
        len=len(data),
        iput=iput,
        oput=DictTree(
            sub=sub,
            arg=arg,
        ),
    )
Example #8
0
    def train(self, X, y, y_real, output_dir):

        X_split = [normalize(t.split()) for t in X]

        split_arrays = train_test_split(X_split, y, y_real, test_size=self.settings['test_size'], stratify=y_real)
        X_train, X_test, y_train, y_test, y_real_train, y_real_test = split_arrays

        text_field = data.Field()
        text_field.build_vocab(X_train, max_size=10000)

        # pad
        X_train_pad = [pad(s, self.settings['max_seq_length']) for s in tqdm(X_train, desc='pad')]
        X_test_pad = [pad(s, self.settings['max_seq_length']) for s in tqdm(X_test, desc='pad')]

        # to index
        X_train_index = [to_indexes(text_field.vocab, s) for s in tqdm(X_train_pad, desc='to index')]
        X_test_index = [to_indexes(text_field.vocab, s) for s in tqdm(X_test_pad, desc='to index')]

        train_dataset = self.to_dataset(X_train_index, y_train, y_real_train)
        val_dataset = self.to_dataset(X_test_index, y_test, y_real_test)

        model = self.model(text_field)
        model.to(device())

        self.full_train(model, train_dataset, val_dataset, output_dir)
        torch.save(text_field, os.path.join(output_dir, self.vocab_name))

        return model, text_field.vocab
Example #9
0
    def predict_turn(self, turn, ontology, args, threshold=0.5):
        model, tokenizer = self.bert, self.tokenizer
        batch_size = args.batch_size
        was_training = model.training
        self.eval()

        preds = []
        examples = turn_to_examples(turn, ontology, tokenizer)
        for i in range(0, len(examples), batch_size):
            batch = examples[i:i + batch_size]
            slots, values, input_ids, token_type_ids, _ = list(zip(*batch))

            # Padding and Convert to Torch Tensors
            input_ids, input_masks = pad(input_ids, args.device)
            token_type_ids = pad(token_type_ids, args.device)[0]

            # Forward Pass
            logits = model(input_ids, token_type_ids, input_masks)
            probs = torch.softmax(logits, dim=-1)[:, 1].cpu().data.numpy()

            # Update preds
            for j in range(len(batch)):
                if probs[j] >= threshold:
                    preds.append((slots[j], values[j]))

        if was_training:
            self.train()

        return preds
Example #10
0
def fit_affine_matrix(p1, p2):
    """
    Fit affine matrix such that p2 * H = p1. First, pad the descriptor vectors
    with a 1 using pad() to convert to homogeneous coordinates, then return
    the least squares fit affine matrix in homogeneous coordinates.

    Hint:
        You can use np.linalg.lstsq function to solve the problem.

        Explicitly specify np.linalg.lstsq's new default parameter rcond=None
        to suppress deprecation warnings, and match the autograder.

    Args:
        p1: an array of shape (M, P) holding descriptors of size P about M keypoints
        p2: an array of shape (M, P) holding descriptors of size P about M keypoints

    Return:
        H: a matrix of shape (P+1, P+1) that transforms p2 to p1 in homogeneous
        coordinates
    """

    assert (p1.shape[0] == p2.shape[0]),\
        'Different number of points in p1 and p2'
    p1 = pad(p1)
    p2 = pad(p2)

    ### YOUR CODE HERE
    pass
    ### END YOUR CODE

    # Sometimes numerical issues cause least-squares to produce the last
    # column which is not exactly [0, 0, 1]
    H[:, 2] = np.array([0, 0, 1])
    return H
Example #11
0
    def _build_frange_part(start, stop, stride, zfill=0):
        """
        Private method: builds a proper and padded
        :class:`fileseq.framerange.FrameRange` string.

        :type start: int
        :param start: first frame
        :type stop: int
        :param stop: last frame
        :type stride: int
        :param stride: increment
        :type zfill: int
        :param zfill: width for zero padding
        :rtype: str
        """
        if stop is None:
            return ''
        pad_start = pad(start, zfill)
        pad_stop = pad(stop, zfill)
        if stride is None or start == stop:
            return '{0}'.format(pad_start)
        elif abs(stride) == 1:
            return '{0}-{1}'.format(pad_start, pad_stop)
        else:
            return '{0}-{1}x{2}'.format(pad_start, pad_stop, stride)
Example #12
0
def cal_dev_loss(model, dev_data, batch_size, sent_vocab, tag_vocab, device):
    """ Calculate loss on the development data
    Args:
        model: the model being trained
        dev_data: development data
        batch_size: batch size
        sent_vocab: sentence vocab
        tag_vocab: tag vocab
        device: torch.device on which the model is trained
    Returns:
        the average loss on the dev data
    """
    is_training = model.training
    model.eval()
    loss, n_sentences = 0, 0
    with torch.no_grad():
        for sentences, tags in utils.batch_iter(dev_data,
                                                batch_size,
                                                shuffle=False):
            sentences, sent_lengths = utils.pad(sentences,
                                                sent_vocab[sent_vocab.PAD],
                                                device)
            tags, _ = utils.pad(tags, tag_vocab[sent_vocab.PAD], device)
            batch_loss = model(sentences, tags, sent_lengths)  # shape: (b,)
            loss += batch_loss.sum().item()
            n_sentences += len(sentences)
    model.train(is_training)
    return loss / n_sentences
Example #13
0
def fit_affine_matrix(p1, p2):
    """ Fit affine matrix such that p2 * H = p1 
    
    Hint:
        You can use np.linalg.lstsq function to solve the problem. 
        
    Args:
        p1: an array of shape (M, P)
        p2: an array of shape (M, P)
        
    Return:
        H: a matrix of shape (P * P) that transform p2 to p1.
    """

    assert (p1.shape[0] == p2.shape[0]),\
        'Different number of points in p1 and p2'
    p1 = pad(p1)
    p2 = pad(p2)
    result = linalg.lstsq(p2, p1)  #求解从p1变换到p2的最优变换矩阵
    H = result[0]
    #变换矩阵X是一个3×3的矩阵
    # Sometimes numerical issues cause least-squares to produce the last
    # column which is not exactly [0, 0, 1]
    H[:, 2] = np.array([0, 0, 1])
    return H
Example #14
0
    def visualize(self, lookahead):
        source_energy = utils.pad(self.source_energy, lookahead)
        assigned_energy = utils.pad(self.assigned_energy, lookahead)
        # available_energy = source_energy - assigned_energy
        planned_energy = utils.pad(self.planned_energy, lookahead)
        consumed_energy = assigned_energy + planned_energy

        fig, ax = plt.subplots()
        ax.set_xlabel('ticks')
        ax.set_ylabel('energy')
        ax.set_ylim((-0.6, 1.25))

        ax.plot(source_energy, color='green', label='available')
        ax.plot(assigned_energy, color='red', label='assigned')
        ax.plot(planned_energy, color='blue', label='planned')
        ax.plot(consumed_energy, color='black', label='consumed')

        for job in self.running_jobs:
            offset = 0
            duration = len(job.profile)
            rect = patches.Rectangle((offset, -0.2-0.1*job.request_id), duration, 0.1, linewidth=1, edgecolor='red', facecolor='pink')
            ax.add_patch(rect)

        for request in self.waiting_requests:
            offset = self.plan[request.request_id]
            duration = len(request.profile)
            rect = patches.Rectangle((offset, -0.2-0.1*request.request_id), duration, 0.1, linewidth=1, edgecolor='blue', facecolor='lightblue')
            ax.add_patch(rect)

        ax.legend(loc='upper right')
        return fig
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    # Copy matches array, to avoid overwriting it
    orig_matches = matches.copy()
    matches = matches.copy()

    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = keypoints1[matches[:, 0]]
    matched2 = keypoints2[matches[:, 1]]
    padded1 = pad(matched1)
    padded2 = pad(matched2)

    #max_inliers = np.zeros(N)
    max_inliers = []
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    for i in range(n_iters):
        m = [p for p in range(N)]
        np.random.shuffle(m)
        m = m[:n_samples]
        H = fit_affine_matrix(matched1[m], matched2[m])
        ins = []
        for j in range(N):
            trans = padded2[j] @ H
            trans = np.array([trans[0] / trans[2], trans[1] / trans[2]])
            di = np.linalg.norm(trans - matched1[j])
            if di < threshold:
                ins.append(j)

        if len(ins) > n_inliers:
            n_inliers = len(ins)
            max_inliers = ins

    H = fit_affine_matrix(matched1[max_inliers], matched2[max_inliers])
    ### END YOUR CODE
    return H, orig_matches[max_inliers]
Example #16
0
    def _build_frange_part(start, stop, stride, zfill=0):
        """
        Private method: builds a proper and padded
        :class:`fileseq.framerange.FrameRange` string.

        :type start: int
        :param start: first frame
        :type stop: int
        :param stop: last frame
        :type stride: int
        :param stride: increment
        :type zfill: int
        :param zfill: width for zero padding
        :rtype: str
        """
        if stop is None:
            return ''
        pad_start = pad(start, zfill)
        pad_stop = pad(stop, zfill)
        if stride is None or start == stop:
            return '{0}'.format(pad_start)
        elif abs(stride) == 1:
            return '{0}-{1}'.format(pad_start, pad_stop)
        else:
            return '{0}-{1}x{2}'.format(pad_start, pad_stop, stride)
Example #17
0
    def __init__(self, dataframe, test=False):
        """
        dataframe: pandas.DataFrame object containing the dataset
        test: boolean values describing whether or not this is the test set
        """
        self.samples = []  # Will store the final data
        self.test = test  # Whether or not the dataset is a test set

        # Convert the strings to token indices
        input1, input2 = get_tokenized(dataframe)

        # Pad data according to the longest sentence
        x1, x1_mask = pad(input1)
        x2, x2_mask = pad(input2)

        # Build the tuple structure to be used in training and testing
        for idx, _ in enumerate(tqdm(range(len(x1)), desc="Loading Data", leave=False)):
            sample = {
                "x1": x1[idx],
                "x1_mask": x1_mask[idx],
                "x2": x2[idx],
                "x2_mask": x2_mask[idx],
            }

            # The score feature is only available for test and dev sets
            if not self.test:
                sample["score"] = dataframe.iloc[idx].scores
            self.samples.append(sample)
Example #18
0
    def backward(self, previousGrad):
        X = self.input
        batch_size = np.shape(self.input)[-1]
        dX = np.zeros(np.shape(self.input))
        self.grads = np.zeros(np.shape(self.parameters))

        X_pad = utils.pad(X, self.pad_w, self.pad_h)
        dX_pad = utils.pad(dX, self.pad_w, self.pad_h)

        for h in range(self.n_H):
            for w in range(self.n_W):
                y_start = self.stride * h
                y_end = y_start + self.kernel_shape[1]
                x_start = self.stride * w
                x_end = x_start + self.kernel_shape[0]
                x_slice = X_pad[x_start:x_end, y_start:y_end, :, :]
                dX_pad[x_start:x_end, y_start:y_end, :, :] += np.dot(
                    self.parameters[:, :, :, :], previousGrad[w, h, :, :])
                self.gradient[:, :, :, :] += np.dot(x_slice,
                                                    previousGrad[w, h, :, :].T)

        self.gradient = self.gradient / batch_size
        for parent in self.parents:
            parent.sonsVisited += 1
            parent.backward(dX)
Example #19
0
    def make(cls, example, tokenizer, max_len):
        sys_utt_tokens, usr_utt_tokens = example.utt
        joint_sys_utt_label = np.array(
            [x for x, _, _ in example.label_dict.values()]).any(axis=0)
        joint_usr_utt_label = np.array(
            [x for _, x, _ in example.label_dict.values()]).any(axis=0)

        class_label_id_dict, start_pos_dict, end_pos_dict = {}, {}, {}
        for slot, (sys_utt_label, usr_utt_label,
                   class_type) in example.label_dict.items():
            sys_tokens, sys_token_labels = \
                sub_tokenize(sys_utt_tokens, sys_utt_label, joint_sys_utt_label, tokenizer)
            usr_tokens, usr_token_labels = \
                sub_tokenize(usr_utt_tokens, usr_utt_label, joint_usr_utt_label, tokenizer)

            # TO DO : truncate
            token_labels = utils.pad(max_len, 0, [0] + sys_token_labels + [0] +
                                     usr_token_labels)
            class_label_id_dict[slot] = class_types.index(class_type)
            start_pos_dict[slot], end_pos_dict[slot] = \
                get_start_end_pos(class_type, token_labels, max_len)

        tokens = ['[CLS]'] + sys_tokens + ['[SEP]'] + usr_tokens + ['[SEP]']
        input_ids = tokenizer.convert_tokens_to_ids(tokens)
        input_mask = [1] * len(input_ids)
        segment_ids = [0] * (2 + len(sys_tokens)) + [1] * (1 + len(usr_tokens))
        utils.pad(max_len, 0, input_ids, input_mask, segment_ids)

        return cls(example.guid, tokens, input_ids, input_mask, segment_ids,
                   start_pos_dict, end_pos_dict, class_label_id_dict)
Example #20
0
    def __init__(self, in_channel, hidden_size, dim):
        '''
        :param in_channel: 表示输入的特征通道数
        :param hidden_size: 表示隐藏层的神经元个数
        :param dim: 表示光谱维的长度
        '''
        super().__init__()
        self.dim = dim
        m = list()
        padding_0 = pad(dim, 5, 3)
        m.append(
            nn.Conv3d(in_channel,
                      hidden_size, (5, 3, 3), (3, 1, 1),
                      padding=(padding_0, 0, 0)))
        m.append(nn.ReLU())
        m.append(nn.BatchNorm3d(hidden_size))
        dim_1 = (dim - 5 + 2 * padding_0) // 3 + 1
        padding_1 = pad(dim_1, 5, 3)
        m.append(
            nn.Conv3d(hidden_size,
                      hidden_size, (5, 3, 3), (3, 1, 1),
                      padding=(padding_1, 0, 0)))
        m.append(nn.ReLU())
        m.append(nn.BatchNorm3d(hidden_size))
        # dim_2 = (dim_1 - 5 + 2 * padding_1) // 3 + 1
        # padding_2 = pad(dim_2, 5, 3)
        # m.append(nn.Conv3d(hidden_size, hidden_size, (5, 3, 3), (3, 1, 1), padding=(padding_2, 0, 0)))
        # m.append(nn.ReLU())
        # m.append(nn.BatchNorm3d(hidden_size))
        self.out_dim = (dim_1 - 5 + 2 * padding_1) // 3 + 1

        self.encoder = nn.Sequential(*m)
Example #21
0
 def __init__(self, out_channel, hidden_size, dim):
     super().__init__()
     padding_0 = pad(dim, 5, 3)
     dim_1 = (dim - 5 + 2 * padding_0) // 3 + 1
     padding_1 = pad(dim_1, 5, 3)
     dim_2 = (dim_1 - 5 + 2 * padding_1) // 3 + 1
     padding_2 = pad(dim_2, 5, 3)
     m = list()
     m.append(
         nn.ConvTranspose3d(hidden_size,
                            hidden_size, (5, 3, 3), (3, 1, 1),
                            padding=(padding_2, 0, 0)))
     m.append(nn.ReLU())
     m.append(nn.BatchNorm3d(hidden_size))
     m.append(
         nn.ConvTranspose3d(hidden_size,
                            hidden_size, (5, 3, 3), (3, 1, 1),
                            padding=(padding_1, 0, 0)))
     m.append(nn.ReLU())
     m.append(nn.BatchNorm3d(hidden_size))
     m.append(
         nn.ConvTranspose3d(hidden_size,
                            out_channel, (5, 3, 3), (3, 1, 1),
                            padding=(padding_0, 0, 0)))
     m.append(nn.ReLU())
     m.append(nn.BatchNorm3d(out_channel))
     self.decoder = nn.Sequential(*m)
Example #22
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:, 0]])
    matched2 = pad(keypoints2[matches[:, 1]])

    max_inliers = np.zeros(N)
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    for o in np.arange(n_iters):
        # step1:
        random_select_matches = matches[
            np.random.choice(np.arange(N), n_samples, replace=False), :]

        # step2:
        p1 = keypoints1[random_select_matches[:, 0]]
        p2 = keypoints2[random_select_matches[:, 1]]
        H = fit_affine_matrix(p1, p2)

        # step3:
        diff = matched2.dot(H) - matched1
        temp_inliers = np.linalg.norm(diff, axis=1)**2 < threshold
        temp_n_inliers = temp_inliers.sum()

        # step4:
        if temp_n_inliers > n_inliers:
            n_inliers = temp_n_inliers
            max_inliers = temp_inliers

    max_matches = matches[max_inliers, :]
    p1 = keypoints1[max_matches[:, 0]]
    p2 = keypoints2[max_matches[:, 1]]
    H = fit_affine_matrix(p1, p2)

    ### END YOUR CODE
    return H, matches[max_inliers]
Example #23
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:,0]])
    matched2 = pad(keypoints2[matches[:,1]])

    max_inliers = []
    n_inliers = 0

    # RANSAC iteration start
    H = None
    
    for n in range(n_iters):
        matches_indices = np.random.randint(N, size = n_samples)
        
        p1 = keypoints1[matches[matches_indices,0]]
        p2 = keypoints2[matches[matches_indices,1]]
        
        affine = fit_affine_matrix(p1, p2)
        
        dot_temp = np.dot(matched2, affine)
        
        temp_inliers = []
        
        for i in range(N):
            point_trans = dot_temp[i]
            point_orig = matched1[i]
            
            distance = np.linalg.norm(point_trans - point_orig)
            if distance < threshold:
                temp_inliers.append(i)
            
            if len(temp_inliers) > len(max_inliers):
                max_inliers = temp_inliers
                H = affine
                 
    return H, matches[max_inliers]
Example #24
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:, 0]])
    matched2 = pad(keypoints2[matches[:, 1]])

    max_inliers = np.zeros(N)
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    t = 0
    while t < n_iters:
        nn_inliers = 0
        index_sample = [random.randint(0, N - 1) for _ in range(n_samples)]
        p1 = matched1[index_sample, :]
        p2 = matched2[index_sample, :]
        H = np.linalg.lstsq(p2, p1)[0]
        H[:, 2] = np.array([0, 0, 1])
        test1 = np.dot(matched2, H)
        temp = (test1 - matched1)**2
        distance = np.sqrt(temp[:, 0] + temp[:, 1])
        print(distance)
        for i in range(distance.shape[0]):
            if distance[i] <= threshold:
                nn_inliers += 1
        if nn_inliers > n_inliers:
            n_inliers = nn_inliers
            max_inliers = np.where(distance <= threshold)[0]
        t += 1
    p1 = matched1[max_inliers]
    p2 = matched2[max_inliers]
    H = np.linalg.lstsq(p2, p1)[0]
    H[:, 2] = np.array([0, 0, 1])
    pass
    ### END YOUR CODE
    return H, matches[max_inliers]
Example #25
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    # Copy matches array, to avoid overwriting it
    orig_matches = matches.copy()
    matches = matches.copy()

    N = matches.shape[0]
    print(N)
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:, 0]])
    matched2 = pad(keypoints2[matches[:, 1]])

    max_inliers = np.zeros(N)
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    for i in range(n_iters):
        temp_max = np.zeros(N, dtype=np.int32)
        temp_n = 0
        idx = np.random.choice(N, n_samples, replace=False)
        p1 = matched1[idx, :]
        p2 = matched2[idx, :]
        H = np.linalg.lstsq(p2, p1, rcond=None)[0]
        H[:, 2] = np.array([0, 0, 1])
        temp_max = np.linalg.norm(matched2.dot(H) - matched1,
                                  axis=1)**2 < threshold
        temp_n = np.sum(temp_max)
        if temp_n > n_inliers:
            max_inliers = temp_max.copy()
            n_inliers = temp_n
    H = np.linalg.lstsq(matched2[max_inliers],
                        matched1[max_inliers],
                        rcond=None)[0]
    H[:, 2] = np.array([0, 0, 1])
    ### END YOUR CODE
    print(H)
    return H, orig_matches[max_inliers]
Example #26
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:, 0]])
    matched2 = pad(keypoints2[matches[:, 1]])
    max_inliers = np.zeros(N)
    n_inliers = 0
    H = None

    # RANSAC iteration start
    ### YOUR CODE HERE
    pass
    for i in range(0, n_iters):
        #1. Select random set of matches
        random_indices = random.sample(list(range(N)), n_samples)
        chosen_kp1 = matched1[random_indices]
        chosen_kp2 = matched2[random_indices]
        #2. Compute affine transformation matrix
        affine_transformation_matrix = np.linalg.lstsq(chosen_kp2,
                                                       chosen_kp1)[0]
        affine_transformation_matrix[:, 2] = [0, 0, 1]
        #3. Compute number of inlier
        real_matched1 = np.dot(matched2, affine_transformation_matrix)
        diff = real_matched1 - matched1
        dists = np.linalg.norm(diff, axis=1)
        curr_inliers = len(np.argwhere(dists < threshold))
        curr_max_inliers = np.where(dists < threshold)
        #4. Keep the largest set of inliers
        if curr_inliers > n_inliers:
            n_inliers = curr_inliers
            H = affine_transformation_matrix
            max_inliers = curr_max_inliers
    #5. Re-compute least-squares estimate on all of the inliers
    H = np.linalg.lstsq(matched2[max_inliers], matched1[max_inliers])[0]
    H[:, 2] = np.array([0, 0, 1])
    ### END YOUR CODE
    return H, matches[max_inliers]
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    choices = list(range(N))
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:,0]])
    matched2 = pad(keypoints2[matches[:,1]])

    max_inliers = np.zeros(N)
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    for i in range(n_iters):
        # 1 select random set of matches
        sample = np.random.choice(choices, n_samples, replace=False) 

        # 2 fitting the the set of p1 to p2
        p1 = matched1[sample,:]
        p2 = matched2[sample,:]

        #fitt the matrix
        mat= np.linalg.lstsq(p2, p1)[0]

        #compute the image of rest of the point
        image_matched1= matched2.dot(mat)

        # compute the number of inlinier
        dists = np.linalg.norm(image_matched1-matched1,axis=1)

        inliers= (dists < threshold)
        if(inliers.sum()> n_inliers):
            n_inliers = inliers.sum()
            H= mat
            max_inliers=inliers

    ### END YOUR CODE
    return H, matches[max_inliers]
Example #28
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation:

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers via Euclidean distance
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Update max_inliers as a boolean array where True represents the keypoint
    at this index is an inlier, while False represents that it is not an inlier.

    Hint:
        You can use np.linalg.lstsq function to solve the problem. 

        Explicitly specify np.linalg.lstsq's new default parameter rcond=None 
        to suppress deprecation warnings, and match the autograder.

        You can compute elementwise boolean operations between two numpy arrays,
        and use boolean arrays to select array elements by index:
        https://numpy.org/doc/stable/reference/arrays.indexing.html#boolean-array-indexing 

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    # Copy matches array, to avoid overwriting it
    orig_matches = matches.copy()
    matches = matches.copy()

    N = matches.shape[0]
    print(N)
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:,0]])
    matched2 = pad(keypoints2[matches[:,1]])

    max_inliers = np.zeros(N, dtype=bool)
    n_inliers = 0

    # RANSAC iteration start
    
    # Note: while there're many ways to do random sampling, please use `np.random.shuffle()`
    # followed by slicing out the first `n_samples` matches here in order to align with the auto-grader.
    
    ### YOUR CODE HERE
    pass
    ### END YOUR CODE
    print(H)
    return H, orig_matches[max_inliers]
Example #29
0
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:,0]])
    matched2 = pad(keypoints2[matches[:,1]])

    max_inliers = np.zeros(N, dtype=bool)
    n_inliers = 0
      
    # RANSAC iteration start
    ### YOUR CODE HERE
    allIdxs = np.arange(N)
    for iterTime in range(n_iters): 
        np.random.shuffle(allIdxs)
        sampleIdxs = allIdxs[0:n_samples]
        outIdxs = allIdxs[n_samples:]
        sample_p1s = matched1[sampleIdxs]
        sample_p2s = matched2[sampleIdxs]
        out_p1s = matched1[outIdxs]
        out_p2s = matched2[outIdxs]
        tempH = np.linalg.lstsq(sample_p2s,sample_p1s)[0]
        tempH[:,2] = np.array([0, 0, 1])
        errors = np.sum( (np.dot(out_p2s,tempH) - out_p1s)**2 ,axis = 1)
        otherInliers = outIdxs[errors < threshold]
        totalInliers = len(otherInliers) + n_samples
        if totalInliers > n_inliers:
            max_inliers[:] = False
            n_inliers = totalInliers
            recomputeIdxs = np.concatenate( (sampleIdxs,otherInliers) )
            max_inliers[recomputeIdxs] = True
            recompute_p1s = matched1[recomputeIdxs]
            recompute_p2s = matched2[recomputeIdxs]
            H = np.linalg.lstsq(recompute_p2s,recompute_p1s)[0]
            H[:,2] = np.array([0, 0, 1])
    ### END YOUR CODE
    return H, matches[max_inliers]
def ransac(keypoints1, keypoints2, matches, n_iters=200, threshold=20):
    """
    Use RANSAC to find a robust affine transformation

        1. Select random set of matches
        2. Compute affine transformation matrix
        3. Compute inliers
        4. Keep the largest set of inliers
        5. Re-compute least-squares estimate on all of the inliers

    Args:
        keypoints1: M1 x 2 matrix, each row is a point
        keypoints2: M2 x 2 matrix, each row is a point
        matches: N x 2 matrix, each row represents a match
            [index of keypoint1, index of keypoint 2]
        n_iters: the number of iterations RANSAC will run
        threshold: the number of threshold to find inliers

    Returns:
        H: a robust estimation of affine transformation from keypoints2 to
        keypoints 1
    """
    N = matches.shape[0]
    n_samples = int(N * 0.2)

    matched1 = pad(keypoints1[matches[:, 0]])
    matched2 = pad(keypoints2[matches[:, 1]])

    max_inliers = np.zeros(N)
    n_inliers = 0

    # RANSAC iteration start
    ### YOUR CODE HERE
    for i in range(n_iters):
        inliersArr = np.zeros(N)
        idx = np.random.choice(N, n_samples, replace=False)
        p1 = matched1[idx, :]
        p2 = matched2[idx, :]

        H, residuals, rank, s = np.linalg.lstsq(p2, p1, rcond=None)
        H[:, 2] = np.array([0, 0, 1])

        output = np.dot(matched2, H)
        inliersArr = np.linalg.norm(output - matched1, axis=1)**2 < threshold
        inliersCount = np.sum(inliersArr)

        if inliersCount > n_inliers:
            max_inliers = inliersArr.copy()  #还是注意深拷贝和浅拷贝啊
            n_inliers = inliersCount

    # 迭代完成,拿最大数目的匹配点对进行估计变换矩阵
    H, residuals, rank, s = np.linalg.lstsq(matched2[max_inliers],
                                            matched1[max_inliers],
                                            rcond=None)
    H[:, 2] = np.array([0, 0, 1])

    ### END YOUR CODE
    return H, matches[max_inliers]
Example #31
0
    def __getitem__(self, idx):
        img_path = self.img_paths[idx]
        mask_path = self.mask_paths[idx]
        image = imread(img_path)
        mask = imread(mask_path)

        image = image.astype('float32') / 255
        if 'train' in img_path:
            mask = (mask>65535/2).astype('float32')
        else:
            if self.args.loss == 'LovaszHingeLoss':
                mask = (mask>127).astype('float32')
            else:
                mask = mask.astype('float32') / 255

        if not self.args.pad:
            image = cv2.resize(image, (self.args.img_size, self.args.img_size))
            mask = cv2.resize(mask, (self.args.img_size, self.args.img_size))
        else:
            image = pad(image, self.args.img_size)
            mask = pad(mask, self.args.img_size)

        if self.aug:
            if self.args.aug == 1:
                image, mask = random_fliplr(image, mask)

            elif self.args.aug == 2:
                image, mask = random_fliplr(image, mask)
                image = random_erase(image)

            elif self.args.aug == 3:
                image, mask = random_fliplr(image, mask)
                image, mask = random_shift(image, mask, wrg=0.1, hrg=0.1, fill_mode='nearest')
                image = random_erase(image)

        if 'Res' in self.args.arch:
            means = [0.485, 0.456, 0.406]
            stds = [0.229, 0.224, 0.225]
            for i in range(3):
                image[:,:,i] = (image[:,:,i] - means[i]) / stds[i]

        if 'Inception' in self.args.arch:
            means = [0.5, 0.5, 0.5]
            stds = [0.5, 0.5, 0.5]
            for i in range(3):
                image[:,:,i] = (image[:,:,i] - means[i]) / stds[i]

        if self.args.depth:
            image = depth_encode(image)

        if self.args.coord_conv:
            image = coord_conv(image)

        image = image.transpose((2, 0, 1))
        mask = mask[:,:,np.newaxis]
        mask = mask.transpose((2, 0, 1))

        return image, mask
Example #32
0
 def _do_pad(match):
     """
     Substitutes padded for unpadded frames.
     """
     result = list(match.groups())
     result[1] = pad(result[1], zfill)
     if result[4]:
         result[4] = pad(result[4], zfill)
     return ''.join((i for i in result if i))
Example #33
0
    def framesToFrameRange(frames, sort=True, zfill=0, compress=False):
        """
        Converts an iterator of frames into a
        :class:`fileseq.framerange.FrameRange`.

        :type frames: iterable
        :param frames: sequence of frames to process
        :type sort: bool
        :param sort: sort the sequence before processing
        :type zfill: int
        :param zfill: width for zero padding
        :type compress: bool
        :param compress: remove any duplicates before processing
        :rtype: str
        """
        if compress:
            frames = unique(set(), frames)
        frames = list(frames)
        if not frames:
            return ''
        if len(frames) == 1:
            return pad(frames[0], zfill)
        if sort:
            frames.sort()
        return ','.join(FrameSet.framesToFrameRanges(frames, zfill))
Example #34
0
 def guess(self, words):
     text = ' '.join(words)
     text = utils.pad(text, self.maxlen)
     if self.invert:
         text = text[::-1]
     input_vec = self.input_codec.encode(text)
     preds = self.model.predict_classes(np.array([input_vec]), verbose=0)
     return self.codec.decode(preds[0], calc_argmax=False).strip('\x00')
Example #35
0
def print_raid(used_devices):
    output = [[' Raid '], []]
    raids = get_raids()
    for raid_name, raid in raids.iteritems():
        used_devices.update({'/dev/' + n: 'R' for n in raid['disks']})
        output.append([raid_name, '[' + raid['personality'] + ']', str(raid['status']['non_degraded_disks']) + '/' + str(raid['status']['raid_disks'])])
        for d in raid['disks']:
            output.append(['  ' + '/dev/' + d])

    return pad(output)
Example #36
0
def print_mounts(mounts):
    output = [' Mounts ', '']

    mnts = []
    for fs_name, mount in sorted(mounts.iteritems(), key=lambda k: k[0]):
        mnts.append([fs_name, mount['fs_type'], mount['total'], mount['used']])
        mnts.append(['  ' + mount['mount_point']])

    output += pad(mnts)
    return output
Example #37
0
def infer(data_dir, model_name, sentence=None):
    """
    """

    # Load components
    with open(os.path.join(basedir, data_dir, 'char2index.json'), 'r') as f:
        char2index = json.load(f)
    with open(os.path.join(basedir, data_dir, 'index2class.json'), 'r') as f:
        index2class = json.load(f)

    # Enter the sentence
    print ("Classes:", index2class.values())
    if not sentence:
        sentence = input("Please enter the sentence: ")

    # Normalize the sentece
    sentence = normalize_string(sentence)

    # Convert sentence(s) to indexes
    input_ = convert_sentence(
        sentence=sentence,
        char2index=char2index,
        )

    # Convert to model input
    input_, _ = pad(
        inputs=[input_],
        char2index=char2index,
        max_length=len(input_),
        )

    # Convert to Variable
    X = Variable(torch.FloatTensor(input_), requires_grad=False)

    # Load the model
    model = torch.load(os.path.join(
        basedir, "data", data_dir.split("/")[-1], model_name))

    # Feed through model
    model.eval()
    scores = model(X)
    probabilities = F.softmax(scores)

    # Sorted probabilities
    sorted_, indices = torch.sort(probabilities, descending=True)
    for index in indices[0]:
        print ("%s - %i%%" % (
            index2class[str(index.data[0])],
            100.0*probabilities.data[0][index.data[0]]))
Example #38
0
def print_devices(used_devices):
    output = [' Devices ', '']
    for dev in sorted(parted.getAllDevices(), key=lambda x: x.path):
        output.append(dev.path + ' ' + dev.model + ' ' + human_number(dev.getSize(), 'MiB'))
        try:
            partitions = []
            disk = parted.Disk(dev)
            for partition in disk.partitions:
                used = ' ' + used_devices.get(partition.path, '') + ' '
                partitions.append([used, partition.path, human_number(partition.getLength() * partition.geometry.device.sectorSize)])
            if partitions:
                output += pad(partitions)
        except parted.DiskLabelException:
            pass

    return output
Example #39
0
def print_lvm(mounts, used_devices):
    output = [' LVM ', '']
    lvm = LVM()
    for vg in sorted(lvm.vgscan(), key=lambda x: x.name):
        output.append(' '.join([vg.name, human_number(vg.size('KiB'), 'KiB'), '(' + str(int((1 - vg.free_size() / vg.size()) * 100)) + '%)']))

        vs = []
        for pv in sorted(vg.pvscan(), key=lambda x: x.name):
            name = pv.name
            used_devices[name] = 'L'
            vs.append([' P ', name, human_number(pv.size('KiB'), 'KiB'), '(' + str(int((1 - pv.free() / pv.size()) * 100)) + '%)'])

        for lv in sorted(vg.lvscan(), key=lambda x: x.name):
            used = mounts.get('/dev/mapper/' + vg.name + '-' + lv.name, {'used': ''})['used']
            vs.append([' L ', lv.name, human_number(lv.size('KiB'), 'KiB'), used])

        output += pad(vs)

    return output