Example #1
0
 def parse_config_cnn(self, arguments, nnet_spec, conv_nnet_spec):
     self.parse_config_dnn(arguments, nnet_spec)
     # parse convolutional layer structure
     self.conv_layer_configs = parse_conv_spec(conv_nnet_spec, self.batch_size)
     # parse convolutional layer activation
     # parse activation function, including maxout
     if arguments.has_key('conv_activation'):
         self.conv_activation_text = arguments['conv_activation']
         self.conv_activation = parse_activation(arguments['conv_activation'])
         # maxout not supported yet
     # whether we use the fast version of convolution
     if arguments.has_key('use_fast'):
         self.use_fast = string2bool(arguments['use_fast'])
Example #2
0
 def parse_config_cnn(self, arguments, nnet_spec, conv_nnet_spec):
     self.parse_config_dnn(arguments, nnet_spec)
     # parse convolutional layer structure
     self.conv_layer_configs = parse_conv_spec(conv_nnet_spec, self.batch_size)
     # parse convolutional layer activation
     # parse activation function, including maxout
     if arguments.has_key('conv_activation'):
         self.conv_activation_text = arguments['conv_activation']
         self.conv_activation = parse_activation(arguments['conv_activation'])
         # maxout not supported yet
     # whether we use the fast version of convolution
     if arguments.has_key('use_fast'):
         self.use_fast = string_2_bool(arguments['use_fast'])
Example #3
0
 def parse_config_cldnn(self, arguments, nnet_spec, conv_nnet_spec, lstm_nnet_spec):
     self.parse_config_common(arguments)
     # parse CNN network structure
     self.conv_layer_configs = parse_conv_spec(conv_nnet_spec, self.batch_size)
     if arguments.has_key('conv_activation'):
         self.conv_activation_text = arguments['conv_activation']
         self.conv_activation = parse_activation(arguments['conv_activation'])
     if arguments.has_key('use_fast'):
         self.use_fast = string_2_bool(arguments['use_fast'])
     # parse LSTM network structure
     lstm_layers = lstm_nnet_spec.split(':')
     self.lstm_layers_sizes = [int(lstm_layers[i]) for i in range(0, len(lstm_layers))]
     # parse DNN network structure
     fc_layers = nnet_spec.split(':')
     self.hidden_layers_sizes = [int(fc_layers[i]) for i in range(0, len(fc_layers)-1)]
     self.n_outs = int(fc_layers[-1])