def __getitem__(self, index): # this is what ImageFolder normally returns original_tuple = super(ImageFolderWithAges, self).__getitem__(index) age = path2age(self.imgs[index][0], self.pat, self.pos) # make a new tuple that includes original and the path tuple_with_path = (original_tuple + (age, )) return tuple_with_path
def __getitem__(self, index): # this is what ImageFolder normally returns original_tuple = super(ImageFolderWithAgeGroup, self).__getitem__(index) img = self.transforms_(image=np.array(original_tuple[0]))["image"] age = path2age(self.imgs[index][0], self.pat, self.pos) # make a new tuple that includes original and the path tuple_with_path = (img, original_tuple[1], self.find_group(age)) return tuple_with_path
def main(): dataset = mixture model = DAL_model('cosface', dataset['n_cls']) if len(sys.argv) >= 4: model.load_state_dict(torch.load(sys.argv[3])) print(f'Loaded weights: {sys.argv[3]}') start_epoch = path2age(sys.argv[3], '_|\.', 0) + 1 else: start_epoch = 0 trainer = Trainer(model, dataset, int(sys.argv[1]), print_freq=1) save = '/data/fuzhuolin/DAL/state_dicts/1' trainer.train(int(sys.argv[2]), start_epoch, save)
def main(): dataset = mixture model = DAL_model('cosface', dataset['n_cls']) if len(sys.argv) >= 4: model.load_state_dict(torch.load(sys.argv[3])) print(f'Loaded weights: {sys.argv[3]}') start_epoch = path2age(sys.argv[3], '_|\.', 0) + 1 else: start_epoch = 0 trainer = Trainer(model, dataset, int(sys.argv[1]), print_freq=1) save = 'E:/2021WIN/SI681/Decorrelated-Adversarial-Learning/state_dicts/1' trainer.train(int(sys.argv[2]), start_epoch, save)
def main(): dataset = cacd model = DAL_model('cosface', dataset['n_cls']) model.load_state_dict(torch.load("../cache/dal-pretrained-1st-stage.pth")) # return if len(sys.argv) >= 4: model.load_state_dict(torch.load(sys.argv[3])) print(f'Loaded weights: {sys.argv[3]}') start_epoch = path2age(sys.argv[3], '_|\.', 0) + 1 else: start_epoch = 0 trainer = Trainer(model, dataset, int(sys.argv[1]), print_freq=100, train_head_only=False) save = '../cache/model_cache/' trainer.train(int(sys.argv[2]), start_epoch, save)