Example #1
0
    def process_message(msg):
        global max_price
        global reached_goal
        global percentage_change
        global price_bought
        global cur_price

        cur_price = float(msg['p'])

        percent_from_max = utils.percent_change(max_price, cur_price)
        percent_from_bought = utils.percent_change(price_bought, cur_price)

        # COMMENT THIS LINE OUT IF YOU DON'T WANT TOO MUCH DATA
        print_trade_data(price_bought, cur_price, max_price, percent_from_max, percent_from_bought)

        if reached_goal == False and percent_from_bought >= sell_order_desired_percentage_profit:
            reached_goal = True
            utils.print_and_write_to_logfile("REACHED PRICE GOAL")

        if percent_from_max < sell_percent_down_to_sell and reached_goal == True:
            utils.print_and_write_to_logfile("PERCENT DOWN FROM PEAK: " + str(percent_from_max) + ". TIME TO SELL")
            try:
                reactor.stop()
            except:
                print("REACTOR ALREADY STOPPED")

        max_price = max(cur_price, max_price)
Example #2
0
def handle_selling(bought_price, market, amount_bought):
    global max_price
    global reached_goal
    global percentage_change
    global price_bought
    global cur_price

    percentage_change = 0
    reached_goal = False
    max_price = bought_price
    price_bought = bought_price

    wait_until_time_to_sell(market)

    status, order_id = binance_utils.limit_sell_on_binance(binance, market, amount_bought, cur_price,
                                                           sell_order_underprice_percent)
    amount_sold = 0
    utils.print_and_write_to_logfile("WAITING FOR SELL ORDER TO GO THROUGH")
    while status != 'FILLED':
        cur_price = binance_utils.get_most_recent_buy_order_price(binance, market)

        order = binance.get_order(
            symbol=market,
            orderId=order_id)

        status = order['status']
        float(order['executedQty'])

        percent_change = utils.percent_change(bought_price, cur_price)

        time.sleep(seconds_before_checking_binance)
    utils.print_and_write_to_logfile(market + " SOLD")
def sell_after_pecentage_gain(bought_price, market, amount):
    sold = False

    while not sold:
        cur_price = binance_utils.get_cur_price_from_large_enough_buy_order(binance, market, amount)
        if utils.percent_change(bought_price, cur_price) > desired_gain_percent:
            sold = binance_utils.market_sell_on_binance(binance, market)
        if not sold:
            time.sleep(seconds_before_checking_binance_price)
    def excess_demand(self, signal, time):
        """Excess demand function for moving averages based heuristic (group 1)."""
        m_window_average = moving_average(signal, time, self.m)
        n_window_average = moving_average(signal, time, self.n)
        price_change = percent_change(m_window_average, n_window_average)

        price_change_strengths = self.ppc_signals.grade(price_change)
        investor_signal_strengths = self.investor_signals.centers

        result = np.dot(investor_signal_strengths, price_change_strengths)
        result /= np.sum(price_change_strengths)

        return result
Example #5
0
    def compute_changes(self):
        LOG.debug("Calculating changes")

        fields = (
            "infected",
            "tests",
            "vaccinated.doses"
        )

        for day in self.data:
            for f in fields:
                d = day[f"{f}.today"]
                t = day[f"{f}.total"]
                day[f"{f}.delta_percent"] = percent_change(t, t - d)
Example #6
0
def getMoodIndexAndChange(request):
    tweets = []
    #nicknamesDict = utils.generateUniNameDict("./uniName.txt")
    collegeName = request.GET.get("text")
    if collegeName in nicknamesDict:
        searchKey = utils.advancedSearch([], any=nicknamesDict[collegeName])
    else:
        searchKey = collegeName

    mostPositiveTweetID = ""
    maxPos = -1

    mostNegativeTweetID = ""
    maxNeg = 1

    for tweet in tweepy.Cursor(api.search,
                               q=searchKey + " -filter:retweets",
                               rpp=5,
                               lang="en",
                               tweet_mode="extended").items(100):
        instance = {}
        text = TextBlob(tweet.full_text)
        instance["timestamp"] = tweet.created_at
        instance["score"] = text.sentiment.polarity
        if (text.sentiment.polarity > maxPos):
            mostPositiveTweetID = tweet.id_str
            maxPos = text.sentiment.polarity

        if (text.sentiment.polarity < maxNeg):
            mostNegativeTweetID = tweet.id_str
            maxNeg = text.sentiment.polarity

        tweets.append(instance)
    #sort the tweets chronologically
    utils.sort_tweet(tweets)

    # for t in tweets:
    #     print(t["timestamp"])

    #split the data in to ten buckets
    bucketAverages = []

    for i in range(0, 100, 5):
        bucketSum = 0
        for j in range(i, i + 5):
            bucketSum += tweets[j]["score"]
        bucketAvg = bucketSum / 5
        bucketAverages.append(bucketAvg)

    oldScoreSum = 0
    for score in bucketAverages[0:10]:
        oldScoreSum += score
    oldScore = oldScoreSum / 10

    newScoreSum = 0
    for score in bucketAverages[10:20]:
        newScoreSum += score
    newScore = newScoreSum / 10
    change = utils.percent_change(oldScore, newScore)

    return_val = JsonResponse({
        "score": newScore,
        "change": change,
        "historical data": bucketAverages,
        "positive tweet id": mostPositiveTweetID,
        "negative tweet id": mostNegativeTweetID
    })

    print("==============sss===========")
    print("==============sss===========")
    print("==============sss===========")

    return JsonResponse({
        "score": newScore,
        "change": change,
        "historical data": bucketAverages,
        "positive tweet id": mostPositiveTweetID,
        "negative tweet id": mostNegativeTweetID
    })
Example #7
0
def getOnlineIndexAndChange(request):
    tweets = []
    anyWord = ["zoom", "online", "remote"]
    #nicknamesDict = utils.generateUniNameDict("./uniName.txt")
    collegeName = request.GET.get("text")

    if collegeName in nicknamesDict:
        anyWord.extend(nicknamesDict[collegeName])  #debug: if this is in place
        searchKey = utils.advancedSearch([], any=anyWord)
    else:
        searchKey = utils.advancedSearch([collegeName], any=anyWord)

    mostPositiveTweetID = ""
    maxPos = -1

    mostNegativeTweetID = ""
    maxNeg = 1

    for tweet in tweepy.Cursor(api.search,
                               q=searchKey + " -filter:retweets",
                               rpp=5,
                               lang="en",
                               tweet_mode="extended").items(50):
        instance = {}
        text = TextBlob(tweet.full_text)
        instance["timestamp"] = tweet.created_at
        instance["score"] = text.sentiment.polarity
        tweets.append(instance)

        if (text.sentiment.polarity > maxPos):
            mostPositiveTweetID = tweet.id_str
            maxPos = text.sentiment.polarity

        if (text.sentiment.polarity < maxNeg):
            mostNegativeTweetID = tweet.id_str
            maxNeg = text.sentiment.polarity

    utils.sort_tweet(tweets)

    oldScoreSum = 0
    for instance in tweets[0:25]:
        oldScoreSum += instance["score"]
    oldScore = oldScoreSum / 25

    count = 0
    newScoreSum = 0
    for instance in tweets[25:]:
        newScoreSum += instance["score"]
        count += 1

    if count == 0:
        newScore = 0
    else:
        newScore = newScoreSum / count

    print("==============aaa===========")
    print("==============aaa===========")
    print("==============aaa===========")

    change = utils.percent_change(oldScore, newScore)
    return JsonResponse({
        "score": newScore,
        "change": change,
        "positive tweet id": mostPositiveTweetID,
        "negative tweet id": mostNegativeTweetID
    })
Example #8
0
def getHealthIndexAndChange(request):
    tweets = []
    anyWord = ["covid", "health", "social distancing", "virus", "safety"]
    #nicknamesDict = utils.generateUniNameDict("./uniName.txt")
    collegeName = request.GET.get("text")

    if collegeName in nicknamesDict:
        anyWord.extend(nicknamesDict[collegeName])  #debug: if this is in place
        searchKey = utils.advancedSearch([], any=anyWord)
    else:
        searchKey = utils.advancedSearch([collegeName], any=anyWord)

    mostPositiveTweetID = ""
    maxPos = -1

    mostNegativeTweetID = ""
    maxNeg = 1

    for tweet in tweepy.Cursor(api.search,
                               q=searchKey + " -filter:retweets",
                               rpp=5,
                               lang="en",
                               tweet_mode="extended").items(80):
        instance = {}
        text = TextBlob(tweet.full_text)
        instance["timestamp"] = tweet.created_at
        instance["score"] = text.sentiment.polarity
        tweets.append(instance)

        if (text.sentiment.polarity > maxPos):
            mostPositiveTweetID = tweet.id_str
            maxPos = text.sentiment.polarity

        if (text.sentiment.polarity < maxNeg):
            mostNegativeTweetID = tweet.id_str
            maxNeg = text.sentiment.polarity

    # sort the tweets and calculate new score and old score

    utils.sort_tweet(tweets)

    # split the data in to ten buckets
    bucketAverages = []

    for i in range(0, len(tweets), 4):
        bucketSum = 0
        for j in range(i, len(tweets)):
            bucketSum += tweets[j]["score"]
        bucketAvg = bucketSum / 4
        bucketAverages.append(bucketAvg)

    oldScoreSum = 0
    for score in bucketAverages[0:10]:
        oldScoreSum += score
    oldScore = oldScoreSum / 10

    newScoreSum = 0
    for score in bucketAverages[10:20]:
        newScoreSum += score

    newScore = newScoreSum / 10

    change = utils.percent_change(oldScore, newScore)

    print("==============bbb===========")
    print("==============bbb===========")
    print("==============bbb===========")

    return JsonResponse({
        "score": newScore,
        "change": change,
        "historical data": bucketAverages,
        "positive tweet id": mostPositiveTweetID,
        "negative tweet id": mostNegativeTweetID
    })
Example #9
0
def get_time_series_inplane(coords,scan_file,
                                  f_c=0.01,up_sample_factor=[1,1,1],
                                  detrend=True,normalize=True,average=True,
                                  TR=None):
    
    """vista_get_time_series: Acquire a time series for a particular scan/ROI.
    
    Parameters 
    ---------- 
    coords: a list of arrays
        each array holds the X,Y,Z locations of an ROI
        (as represented in the Inplane)

    scan_file: string, full path to the analyze file of the scan

    TR: float the repetition time in the experiment
    
    up_sample_factor: float
       the ratio between the size of the inplane and the size of the gray
       (taking into account FOV and number of voxels in each
       dimension). Defaults to [1,1,1] - no difference 
      
    detrend: bool, optional
      whether to detrend the signal. Default to 'True'
      
    normalize: bool, optional
      whether to transform the signal into % signal change. Default to 'True'

    average: bool, optional
      whether to average the resulting signal

    Returns
    -------
    time_series: array, the resulting time_series
    Depending on the averaging flag, can have the dimensions 1*time-points or
    number-voxels*time-points.
    
    Notes
    -----

    The order of the operations on the time-series is:
    detrend(on a voxel-by-voxel basis) => normalize (on a voxel-by-voxel basis)
    => average (across voxels, on a time-point-by-time-point basis)

    """
    from nipy.io.imageformats import load
    
    #Get the nifti image object

    print 'Reading data from %s' %scan_file 
    data = load(scan_file).get_data() #if using nipy.io.imageformats.load

    #Adjusted the coordinates according to the ratio between the
    #sampling in the gray and the sampling in the inplane, move the
    #slice dimension to be the first one and change the indexing from
    #1-based to 0-based. The coord order is as it is in the input, so need to
    #make sure that it is correct on the input side. 
    
    this_data = data[np.round(coords[0]/up_sample_factor[0]).astype(int)-1,
                         np.round(coords[1]/up_sample_factor[1]).astype(int)-1,
                         np.round(coords[2]/up_sample_factor[2]).astype(int)-1]

    if normalize:
        this_data = tsu.percent_change(this_data)

    if average:
        this_data = np.mean(this_data,0)
        
    time_series = ts.UniformTimeSeries(data=this_data,sampling_interval=TR)

    if detrend:
        F = ta.FilterAnalyzer(this_bold,lb=f_c)
        time_series = F.filtered_boxcar
        
    return time_series
Example #10
0
common_ids = loaded['common_ids']
profile_data = loaded['profile_data']

#Id to root mean square dict
id_to_rmse = {}

#Id to slope dict
id_to_slope = {}

#Id to max track difference before greatest percent gain in followerts
id_to_track = {}

for id in common_ids:
    # Get percent change set for followers
    #TODO: Should percent change be from minimum follower count???
    points = utils.percent_change(profile_data[id]['followers_count'])
    x = np.array([1, 2, 3, 4, 5])

    # Find regression line for percent change set
    regline = linregress(x, points)

    if regline.slope >= 0:
        # Calculate rmse
        rmse = 0
        for i in range(len(points)):
            if (regline.slope > 0):
                predicted = (regline.slope * x[i]) + regline.intercept
                rmse += (predicted - points[i])**2

        rmse = rmse / len(points)
        rmse = math.sqrt(rmse)
Example #11
0
for f in vars.db_filenames:
    db = Database_Instance('../db_files/' + f)
    for a in db.query('''SELECT id, followers_count FROM surface_artist_data'''):
        if a[0] in id_to_followers:
            id_to_followers[a[0]].append(a[1])
        else:
            id_to_followers[a[0]] = [a[1]]

max_followers = []
max_percent_gain = []
max_followers_bad = []
max_percent_gain_bad = []
ids = []
ids_bad = []

for id in id_to_followers.keys():
    try:
        max(id_to_followers[id])
        max(utils.percent_change(id_to_followers[id]))
        max_followers_bad.append(max(id_to_followers[id]))
        max_percent_gain_bad.append(max(utils.percent_change(id_to_followers[id])))
    except:
        print(id_to_followers[id])

plt.plot(max_followers, max_percent_gain, 'b.')

plt.ylabel('Max Percent Gain')
plt.xlabel('Max Followers')

plt.show()