def uploadFile(self, bucket, folder, local_path, chunk_size=52428800): """ Upload local_filename to bucket/folder/local_filename in bucket Same filename gets overwritten """ source_size = os.stat(local_path).st_size chunk_count = int(math.ceil(source_size / float(chunk_size))) # local_filename = local_path.split('/')[-1] try: bucket = self.connection.get_bucket(bucket) # select bucket except Exception as e: print('Problem getting bucket %s' % e) return if bucket: # create a multipart upload request mp = bucket.initiate_multipart_upload(os.path.basename(local_path)) """ try: key = bucket.new_key(os.path.join(folder, local_filename)) except Exception as e: print('Folder %s not accessible %s'%(folder,e)) key.set_contents_from_filename(local_path) """ done = 0 for i in range(chunk_count): offset = chunk_size * i bytes = min(chunk_size, source_size - offset) with FileChunkIO(local_path, 'r', offset=offset, bytes=bytes) as fp: mp.upload_part_from_file(fp, part_num=i + 1) done += chunk_size if source_size > done: ut.printStuff('Uploading file %s %%', (int(100. * done / source_size - 1))) mp.complete_upload() print('File uploaded correctly') print else: print('%s does not exist' % bucket)
import utils as ut # Load sound files path = 'data/' sound_file_paths = [os.path.join(path, "helpme.wav"), os.path.join(path, "podcast_17_sample.wav"), ] sound_names = ["helpme", "podcast_17_sample"] raw_sounds = ut.load_sound_files(sound_file_paths) windowsize = 6000 # size of sliding window (22050 samples == 0.5 sec) step = 3000 maxfiles = 10000 numfiles = 0 dimx = 6 dimy = 5 # create positive samples audiosamples = raw_sounds[0] numsamples = audiosamples.shape[0] for x in range(0, numsamples-windowsize, step): numfiles +=1 b = x # begin e = b+windowsize # end ut.printStuff('Creating spectrum image class_1 samples [%d-%d] of %d file %d',(b,e, numsamples, numfiles)) filename = os.path.join(path, 'class_1/partial_spectrum_%d.png'%x) ut.specgram_frombuffer(audiosamples[b:e], dimx, dimy, fname=filename, dpi=180) print('\nbye!\n')
image_path = path.join(config.data_dir, "images") if not path.isdir(image_path): mkdir(image_path) windowsize = 6000 # size of sliding window (22050 samples == 0.5 sec) step = 3000 numfiles = 0 dimx = 6 dimy = 5 for i in range(len(raw_sounds)): # create samples numsamples = raw_sounds[i].shape[0] file_path = path.basename(sound_files[i]) file_path = path.splitext(file_path)[0] for x in range(0, numsamples - windowsize, step): b = x # begin e = x + windowsize # end fmt_string = "(%d/%d) %s [%d-%d] of %d file %d" ut.printStuff(fmt_string, (i, len(raw_sounds) - 1, file_path, x, e, numsamples, numfiles)) filename = path.join(image_path, "{}_{}.png".format(file_path, x)) ut.specgram_frombuffer(raw_sounds[i][x:e], dimx, dimy, fname=filename, dpi=180) numfiles += 1 print('\nbye!\n')
# Load sound files path = '/archive/ahem_data/' sound_file_paths = [os.path.join(path, "ahem_sounds.wav"), os.path.join(path, "podcast_17_sample.wav"), ] sound_names = ["ahem_sounds", "podcast_17_sample"] raw_sounds = ut.load_sound_files(sound_file_paths) windowsize = 6000 # size of sliding window (22050 samples == 0.5 sec) step = 3000 maxfiles = 10000 numfiles = 0 dimx = 6 dimy = 5 # create negative samples audiosamples = raw_sounds[1] numsamples = audiosamples.shape[0] for x in xrange(0, numsamples-windowsize, step): numfiles += 1 b = x # begin e = b+windowsize # end ut.printStuff('Creating spectrum image class_0 samples [%d-%d] of %d file %d',(b,e, numsamples, numfiles)) filename = os.path.join(path, 'class_0/partial_spectrum_%d.png'%x) ut.specgram_frombuffer(audiosamples[b:e], dimx, dimy, fname=filename, dpi=180) print('\nbye!\n')