Example #1
0
def benchmark_cost_function(data_sizes):
    polygon = pickle.load(open('utils/good_path_for_rectangle.pickle', 'rb'))

    save_folder = generate_folder_name()
    iterations = 10
    results = np.empty((len(data_sizes), iterations, 2), dtype=float)

    for i, dsize in enumerate(data_sizes):
        data = dg.generate_rectangle_set(dsize)

        print("\nRun {} with value {}".format(i+1, dsize))

        # Compile functions and warm up GPU
        acoc.cost_function_gpu(data.T, polygon)

        for j in range(iterations):
            utils.print_on_current_line('Iteration {}/{}'.format(j, iterations))
            start_cpu = time.clock()
            acoc.cost_function(data.T, polygon)
            end_cpu = time.clock()
            results[i][j][0] = end_cpu - start_cpu

            start_gpu = time.clock()
            acoc.cost_function_gpu(data.T, polygon)
            end_gpu = time.clock()
            results[i][j][2] = end_gpu - start_gpu

    mean_results = np.mean(results, axis=1).T
    acoc_plotter.plot_bar_chart_gpu_benchmark(mean_results, data_sizes, ['CPython', 'GPU'], save_folder, 'results')

    np.set_printoptions(precision=7, suppress=False)
    print("\nResults: \n{}".format(mean_results))
    utils.save_object(mean_results, save_folder, 'results')
Example #2
0
    def _construct_polygon(self, data, plane_string, start_time, print_string):
        cuda.to_device(data)
        ant_scores = []
        current_best_ant = []
        last_level_up_or_best_ant = 0
        matrix = AcocMatrix(data, tau_initial=self.config.tau_init)
        current_best_score = 0

        while matrix.level <= self.config.max_level:
            start_vertex = get_random_weighted(matrix.edges)
            if self.config.multi_level:
                if (len(ant_scores) - last_level_up_or_best_ant
                    ) > self.config.level_convergence_rate:
                    matrix.level_up(current_best_ant)
                    last_level_up_or_best_ant = len(ant_scores)
            _ant = Ant(start_vertex)
            _ant.move_ant()

            while not _ant.at_target and not _ant.is_stuck:
                _ant.move_ant()
            if _ant.at_target:
                ant_score = self._score(_ant.edges_travelled, data)
                if ant_score > current_best_score:
                    current_best_ant = _ant.edges_travelled
                    current_best_score = ant_score
                    last_level_up_or_best_ant = len(ant_scores)
                    if self.config.plot:
                        plotter.plot_path_with_data(
                            current_best_ant,
                            data,
                            matrix,
                            save=True,
                            save_folder=osp.join(
                                self.save_folder,
                                'best_paths/{}/'.format(plane_string)),
                            file_name='ant' + str(len(ant_scores)))

                self._put_pheromones(current_best_ant, current_best_score)
                self._reset_at_random(matrix)
                ant_scores.append(ant_score)
                t_elapsed = utils.seconds_to_hms(time.time() - start_time)
                utils.print_on_current_line(
                    "Level {}/{}, {}, Time elapsed: {}".format(
                        matrix.level, self.config.max_level, print_string,
                        t_elapsed))

        return current_best_ant
Example #3
0
def run(*args):
    config = dict(CONFIG)
    for conf in args:
        config[conf[0]] = conf[1]
    data = pickle.load(open('utils/data_sets.pickle', 'rb'))[config['data_set']]
    number_runs = config['number_runs']

    clf = acoc.PolyACO(config)

    run_times = np.zeros(number_runs, dtype=float)
    for i in range(number_runs):
        iter_string = "Iteration: {}/{}".format(i + 1, number_runs)

        start = time.clock()
        clf.train(data, print_string=', ' + iter_string)
        end = time.clock()
        run_times[i] = end - start

        utils.print_on_current_line(iter_string)
    return np.mean(run_times)
Example #4
0
def run(*args):
    config = dict(CONFIG)
    for conf in args:
        config[conf[0]] = conf[1]
    data = pickle.load(open('utils/data_sets.pickle',
                            'rb'))[config['data_set']]
    number_runs = config['number_runs']

    clf = acoc.PolyACO(config)

    run_times = np.zeros(number_runs, dtype=float)
    for i in range(number_runs):
        iter_string = "Iteration: {}/{}".format(i + 1, number_runs)

        start = time.clock()
        clf.train(data, print_string=', ' + iter_string)
        end = time.clock()
        run_times[i] = end - start

        utils.print_on_current_line(iter_string)
    return np.mean(run_times)
Example #5
0
def parameter_tester(parameter_name, values, save_folder=None):
    if save_folder is None:
        save_folder = utils.generate_folder_name()
    print("\n\nExperiment for parameter '{}' with values {}".format(
        parameter_name, values))

    plt.clf()
    all_scores = []
    for index, v in enumerate(values):
        print("Run {} with value {}".format(index + 1, v))
        scores = run((parameter_name, v))
        all_scores.append(scores)
        utils.print_on_current_line('')
    header = ','.join(str(s) for s in values)
    result_str = header + '\n' + ','.join(["{:.4f}".format(sum(s) / CLASSIFIER_CONFIG.runs) for s in all_scores]) + \
                 '\n\n' + 'all scores:\n'

    for a in all_scores:
        result_str += ','.join('{:.4f}'.format(s) for s in a) + '\n'
    utils.save_string_to_file(result_str,
                              parent_folder=save_folder,
                              file_name='result_' + parameter_name + '.txt')
Example #6
0
    def _construct_polygon(self, data, plane_string, start_time, print_string):
        cuda.to_device(data)
        ant_scores = []
        current_best_ant = []
        last_level_up_or_best_ant = 0
        matrix = AcocMatrix(data, tau_initial=self.config.tau_init)
        current_best_score = 0

        while matrix.level <= self.config.max_level:
            start_vertex = get_random_weighted(matrix.edges)
            if self.config.multi_level:
                if (len(ant_scores) - last_level_up_or_best_ant) > self.config.level_convergence_rate:
                    matrix.level_up(current_best_ant)
                    last_level_up_or_best_ant = len(ant_scores)
            _ant = Ant(start_vertex)
            _ant.move_ant()

            while not _ant.at_target and not _ant.is_stuck:
                _ant.move_ant()
            if _ant.at_target:
                ant_score = self._score(_ant.edges_travelled, data)
                if ant_score > current_best_score:
                    current_best_ant = _ant.edges_travelled
                    current_best_score = ant_score
                    last_level_up_or_best_ant = len(ant_scores)
                    if self.config.plot:
                        plotter.plot_path_with_data(current_best_ant, data, matrix, save=True,
                                                    save_folder=osp.join(self.save_folder,
                                                                         'best_paths/{}/'.format(plane_string)),
                                                    file_name='ant' + str(len(ant_scores)))

                self._put_pheromones(current_best_ant, current_best_score)
                self._reset_at_random(matrix)
                ant_scores.append(ant_score)
                t_elapsed = utils.seconds_to_hms(time.time() - start_time)
                utils.print_on_current_line("Level {}/{}, {}, Time elapsed: {}".format(matrix.level, self.config.max_level, print_string, t_elapsed))

        return current_best_ant
Example #7
0
def benchmark_cost_function(data_sizes):
    polygon = pickle.load(open('utils/good_path_for_rectangle.pickle', 'rb'))

    save_folder = generate_folder_name()
    iterations = 10
    results = np.empty((len(data_sizes), iterations, 2), dtype=float)

    for i, dsize in enumerate(data_sizes):
        data = dg.generate_rectangle_set(dsize)

        print("\nRun {} with value {}".format(i + 1, dsize))

        # Compile functions and warm up GPU
        acoc.cost_function_gpu(data.T, polygon)

        for j in range(iterations):
            utils.print_on_current_line('Iteration {}/{}'.format(
                j, iterations))
            start_cpu = time.clock()
            acoc.cost_function(data.T, polygon)
            end_cpu = time.clock()
            results[i][j][0] = end_cpu - start_cpu

            start_gpu = time.clock()
            acoc.cost_function_gpu(data.T, polygon)
            end_gpu = time.clock()
            results[i][j][2] = end_gpu - start_gpu

    mean_results = np.mean(results, axis=1).T
    acoc_plotter.plot_bar_chart_gpu_benchmark(mean_results, data_sizes,
                                              ['CPython', 'GPU'], save_folder,
                                              'results')

    np.set_printoptions(precision=7, suppress=False)
    print("\nResults: \n{}".format(mean_results))
    utils.save_object(mean_results, save_folder, 'results')