label=f"$\sigma = {s} \Rightarrow k={0.4}$") plt.xlim(-0.6, 10.6) plt.ylim(0.001, 1) plt.legend() plt.yscale("log") ax = plt.gca() ax.yaxis.set_major_formatter(PercentFormatter(xmax=1, decimals=1)) #%% # max tracing capacity m = 2147483647 susp = read_batch_run("data/suspContainment.zip", rValues=True) #%% df = susp[(susp.tracingCapacity == m) & (susp.unrestricted == "yes")] #df = suspT hue = sns.color_palette(n_colors=3) g = sns.relplot(x="date", y="cases", estimator="mean", ci="q95", palette=hue, hue="sigma", col="containment",
label=f"$\sigma = {s} \Rightarrow k={0.4}$") plt.xlim(-0.6, 10.6) plt.ylim(0.001, 1) plt.legend() plt.yscale("log") ax = plt.gca() ax.yaxis.set_major_formatter(PercentFormatter(xmax=1, decimals=1)) #%% # max tracing capacity m = 2147483647 susp = read_batch_run("data/suspContainment3.zip", r_values=True) #%% Unrestricted df = susp[(susp.tracingCapacity == 0) & (susp.unrestricted == "yes") & (susp.containment == "INDIVIDUAL_ONLY")] fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3)) hue = sns.color_palette(n_colors=3) sns.lineplot(x="date", y="cases", estimator="mean", ci="q95", ax=ax,
s=40, data=act_week, ax=ax) #sns.scatterplot(x="date", y="notAtHomeExceptLeisureAndEdu", label="notAtHome (Weekend)", s=40, data=act_wend, ax=ax) ax.xaxis.set_major_formatter(dateFormater) plt.ylabel("activity participation in %") plt.legend(loc="best") plt.xlim(datetime.fromisoformat("2020-03-01"), datetime.fromisoformat("2020-11-01")) #%% Base calibration df_base = read_batch_run("data/paper.zip") #%% aggregate_batch_run("data/paper.zip") #%% fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3.8)) df = df_base[(df_base.unrestricted == "yes") & (df_base.diseaseImport == "yes") & (df_base.theta == 1.36e-5)] rki.plot.scatter(x="date", y=["cases"], label=["RKI Cases"],
s=40, data=act_week, ax=ax) #sns.scatterplot(x="date", y="notAtHomeExceptLeisureAndEdu", label="notAtHome (Weekend)", s=40, data=act_wend, ax=ax) ax.xaxis.set_major_formatter(dateFormater) plt.ylabel("activity participation in %") plt.legend(loc="best") plt.xlim(datetime.fromisoformat("2020-03-01"), datetime.fromisoformat("2020-07-01")) #%% Section 3-1 df31 = read_batch_run("data/section-3-1.zip") #%% fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3.8)) rki.plot.scatter(x="date", y=["cases"], label=["RKI Cases"], color=palette[4], ax=ax, logy=True) sns.lineplot(x="date", y="cases", estimator="mean",
#%% sns.set_style("whitegrid") sns.set_context("paper") dateFormater = ConciseDateFormatter(AutoDateLocator()) palette = sns.color_palette() #%% rki, hospital = read_case_data("berlin-cases.csv", "berlin-hospital.csv") #%% Graphs for outdoor / indoor runs outdoor = read_batch_run("data/outdoor.zip") #%% fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3.8)) hue = sns.color_palette(n_colors=2) rki.plot.scatter(x="date", y=["cases"], label=["RKI Cases"], color=palette[4], ax=ax, logy=True) sns.lineplot(x="date", y="cases",
ev_work_05 = events_05[events_05.actType.str.contains("work")] #%% p = np.array([0.25, 0.5, 0.75]) # Effect of remaining fraction is roughly quadratic print(ev_work.maxGroupSize.quantile(p)) print(ev_leis.maxGroupSize.quantile(p)) print(ev_visit.maxGroupSize.quantile(p)) print(ev_errands.maxGroupSize.quantile(p)) #%% gs = read_batch_run("data/groupSizes5.zip") #%% for cm in set(gs.contactModel): df = gs[gs.contactModel == cm] fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3.8)) hue = sns.color_palette(n_colors=3) #rki.plot.scatter(x="date", y=["cases"], label=["RKI Cases"], color=palette[4], ax=ax, logy=True) sns.lineplot(x="date", y="cases", estimator="mean",
sns.set_style("whitegrid") sns.set_context("paper") dateFormater = ConciseDateFormatter(AutoDateLocator()) palette = sns.color_palette() #%% rki, hospital = read_case_data("berlin-cases.csv", "berlin-hospital.csv") #rki, meldedatum, hospital = read_case_data("/Users/sebastianmuller/git/public-svn/matsim/scenarios/countries/de/episim/original-data/Fallzahlen/RKI/berlin-cases.csv", "/Users/sebastianmuller/git/public-svn/matsim/scenarios/countries/de/episim/original-data/Fallzahlen/RKI/berlin-cases-meldedatum.csv", "/Users/sebastianmuller/git/public-svn/matsim/scenarios/countries/de/episim/original-data/Fallzahlen/Berlin/berlin-hospital.csv") #%% Graphs for outdoor / indoor runs outdoor = read_batch_run("data/outdoor.zip") #%% fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3.8)) hue = sns.color_palette(n_colors=2) rki.plot.scatter(x="date", y=["cases"], label=["RKI Cases"], color=palette[4], ax=ax, logy=True) sns.lineplot(x="date", y="cases", estimator="mean", ci="q95", ax=ax, style="tracingCapacity", hue="furtherMeasuresOnOct1", palette=hue, data=outdoor) ax.xaxis.set_major_formatter(dateFormater) ax.yaxis.set_major_formatter(ScalarFormatter())
pass h_bound = pd.DataFrame(scaled, columns=["size"]) #%% p = np.array([0.1, 0.25, 0.5, 0.75, 0.9]) # Effect of remaining fraction is roughly quadratic print(h_bound['size'].quantile(p ** 1.6)) #%% gs = read_batch_run("data/groupSizes3.zip") #%% fig, ax = plt.subplots(dpi=250, figsize=(7.5, 3.8)) palette = sns.color_palette(n_colors=3) rki.plot.scatter(x="date", y=["cases"], label=["RKI Cases"], ax=ax, logy=True) #sns.lineplot(x="date", y="cases", hue="remaining", style="bySize", palette=palette, ci=None, data=df, ax=ax) sns.lineplot(x="date", y="cases", hue="sigma", style="bySize", palette=palette, ci=None, data=gs[gs.remaining==0.25], ax=ax) plt.ylim(bottom=1)