def make_init_fn(self, chpt_path): if chpt_path is None: chpt_path = get_checkpoint_path(self.get_save_dir()) if chpt_path is None: print('No checkpoint found for initialization') return None else: print('Initializing from previous checkpoint: {}'.format( chpt_path)) else: print( 'Initializing from provided checkpoint: {}'.format(chpt_path)) var2restore = slim.get_variables_to_restore( exclude=self.exclude_scopes) print('Variables to restore: {}'.format( [v.op.name for v in var2restore])) var2restore = remove_missing(var2restore, chpt_path) init_assign_op, init_feed_dict = slim.assign_from_checkpoint( chpt_path, var2restore) sys.stdout.flush() # Create an initial assignment function. def init_fn(sess): sess.run(init_assign_op, init_feed_dict) return init_fn
def cont_init_fn(self, chpt_path): if chpt_path: if self.reinit_fc: var2restore = slim.get_variables_to_restore( include=[ 'encoder', 'decoder', 'generator', 'discriminator' ], exclude=[ 'discriminator/fully_connected', 'discriminator/fc1', 'discriminator/fc2' ]) else: var2restore = slim.get_variables_to_restore(include=[ 'encoder', 'decoder', 'generator', 'discriminator' ]) print('Variables to restore: {}'.format( [v.op.name for v in var2restore])) var2restore = remove_missing(var2restore, chpt_path) init_assign_op, init_feed_dict = slim.assign_from_checkpoint( chpt_path, var2restore) sys.stdout.flush() # Create an initial assignment function. def InitAssignFn(sess): sess.run(init_assign_op, init_feed_dict) return InitAssignFn else: return None
def make_init_fn(self, chpt_path): if chpt_path is None: return None var2restore = slim.get_variables_to_restore(include=['discriminator', 'generator']) print('Variables to restore: {}'.format([v.op.name for v in var2restore])) var2restore = remove_missing(var2restore, chpt_path) init_assign_op, init_feed_dict = slim.assign_from_checkpoint(chpt_path, var2restore) sys.stdout.flush() # Create an initial assignment function. def init_fn(sess): print('Restoring from: {}'.format(chpt_path)) sess.run(init_assign_op, init_feed_dict) return init_fn
def make_init_fn(self, chpt_path): # Handle model initialization from prior checkpoint if chpt_path is None: return None var2restore = slim.get_variables_to_restore(exclude=self.exclude_scopes) print('Variables to restore: {}'.format([v.op.name for v in var2restore])) var2restore = remove_missing(var2restore, chpt_path) init_assign_op, init_feed_dict = slim.assign_from_checkpoint(chpt_path, var2restore) sys.stdout.flush() # Create an initial assignment function. def init_fn(sess): print('Restoring from: {}'.format(chpt_path)) sess.run(init_assign_op, init_feed_dict) return init_fn
def make_init_fn(self, chpt_path): if chpt_path is None: ae_chpt_dir = os.path.join( LOG_DIR, '{}_{}/'.format(self.model.ae.name, self.dataset.name)) chpt_path = get_checkpoint_path(ae_chpt_dir) var2restore = slim.get_variables_to_restore( include=self.restore_scopes) print('Variables to restore: {}'.format( [v.op.name for v in var2restore])) var2restore = remove_missing(var2restore, chpt_path) init_assign_op, init_feed_dict = slim.assign_from_checkpoint( chpt_path, var2restore) sys.stdout.flush() # Create an initial assignment function. def init_fn(sess): print('Restoring from: {}'.format(chpt_path)) sess.run(init_assign_op, init_feed_dict) return init_fn