Example #1
0
    def val_end(self, metrics):
        """WRITE STAT FIRST"""
        if self.stat_cache is None:
            self.stat_cache = {'VLloss': metrics.get('VLloss'),
                            'VLepe': metrics.get('VLepe')}
            self.savemodel({'VLloss': metrics.get('VLloss'),
                            'VLepe': metrics.get('VLepe')})
        else:
            if self.stat_cache.get('VLloss') < metrics.get('VLloss'):
                self.stat_cache.update({'VLloss': metrics.get('VLloss'),
                                'VLepe': metrics.get('VLepe')})
                self.savemodel(self.stat_cache)
            else:
                self.load_old_best()

        self.model.eval()
        with torch.no_grad():
            pred_frame = metrics.get('pred_frame').cpu()
            gt_frame = metrics.get('gt_frame').cpu()
            pred_flow = metrics.get('pred_flow').cpu()
            gt_flow = metrics.get('gt_flow').cpu()
            pred_occ = replicatechannel(metrics.get('pred_occ')).cpu()
            gt_occ = replicatechannel(metrics.get('gt_occ')).cpu()
            data = torch.stack([pred_frame, gt_frame, pred_flow, gt_flow, pred_occ, gt_occ], 0).cpu()
            data = data.reshape(-1, 3, data.size(3), data.size(4)).cpu()
            grid = make_grid(data, nrow=4)
            self.writer.add_images('VAL/Results', grid.unsqueeze(0), metrics.get('n_batch'))
Example #2
0
    def train_epoch_end(self, metrics):
        self.model.eval()
        with torch.no_grad():
            pred_frame = metrics.get('pred_frame')
            gt_frame = metrics.get('gt_frame')
            pred_flow = metrics.get('pred_flow')
            gt_flow = metrics.get('gt_flow')
            pred_occ = replicatechannel(metrics.get('pred_occ'))
            gt_occ = replicatechannel(metrics.get('gt_occ'))

            data = torch.stack([
                pred_frame.cuda(),
                gt_frame.cuda(),
                pred_flow.cuda(),
                gt_flow.cuda(),
                pred_occ.cuda(),
                gt_occ.cuda()
            ], 0)

            data = data.reshape(-1, 3, data.size(3), data.size(4)).cpu()

            grid = ToTensor()((ToPILImage()(make_grid(data, nrow=2))))
            self.writer.add_images('TRAIN/Results', grid.unsqueeze(0),
                                   metrics.get('n_batch'))
        self.val(metrics.get('epoch'))
Example #3
0
 def test_end(self, metrics):
     self.model.eval()
     with torch.no_grad():
         pred_frame = metrics.get('pred_frame').cpu()
         gt_frame = metrics.get('gt_frame').cpu()
         pred_flow = metrics.get('pred_flow').cpu()
         pred_occ = replicatechannel(metrics.get('pred_occ')).cpu()
         data = torch.stack([pred_frame, gt_frame, pred_flow, pred_occ], 0)
         data = data.reshape(-1, 3, data.size(3), data.size(4)).cpu()
         grid = make_grid(data, nrow=4)
         self.writer.add_images('Test/Results', grid.unsqueeze(0), metrics.get('n_batch'))
Example #4
0
    def train_epoch_end(self, metrics):
        self.model.eval()
        with torch.no_grad():
            pred_frame = metrics.get('pred_frame')
            gt_frame = metrics.get('gt_frame')
            subf= metrics.get('subf')
            pred_flow = metrics.get('pred_flow')
            gt_flow = metrics.get('gt_flow')

            # ff_in = metrics.get('ff_in')
            # fb_in = metrics.get('fb_in')
            pred_occ = replicatechannel(metrics.get('pred_occ'))
            gt_occ = replicatechannel(metrics.get('gt_occ'))

            data = torch.cat([pred_frame.cuda(), gt_frame.cuda(),subf.cuda(), pred_flow.cuda(), gt_flow.cuda(), pred_occ.cuda(), gt_occ.cuda()],0)
            # ff_data = make_grid(torch.cat([ff_in.cuda(),fb_in.cuda()],0).cpu(), nrow=4)
            data = data.cpu()

            grid = make_grid(data, nrow=4)
            grid = ToTensor()((ToPILImage()(grid)).resize((4106//6,2630//4)))
            self.writer.add_images('TRAIN/Results', grid.unsqueeze(0), metrics.get('n_batch'))
            # self.writer.add_images('INPUT/Flows_prior', ff_data.unsqueeze(0), metrics.get('n_batch'))

        self.val(metrics.get('epoch'))