Example #1
0
def remd_loss(X,Y, h=None, cos_d=True, splits= [3+64+64+128+128+256+256+256+512+512],return_mat=False):

    d = X.size(1)

    if d == 3:
        X = utils.rgb_to_yuv_pc(X.transpose(0,1).contiguous().view(d,-1)).transpose(0,1)
        Y = utils.rgb_to_yuv_pc(Y.transpose(0,1).contiguous().view(d,-1)).transpose(0,1)

    else:
        X = X.transpose(0,1).contiguous().view(d,-1).transpose(0,1)
        Y = Y.transpose(0,1).contiguous().view(d,-1).transpose(0,1)

    # Y = Y.transpose(0, 1)

    #Relaxed EMD
    CX_M = get_DMat(X,Y,1.,cos_d=True, splits=splits)
    
    if return_mat:
        return CX_M
    
    if d==3:
        CX_M = CX_M+get_DMat(X,Y,1.,cos_d=False, splits=splits)

    m1,m1_inds = CX_M.min(1)
    m2,m2_inds = CX_M.min(0)
    if m1.mean() > m2.mean():
        used_style_feats = Y[m1_inds,:]
    else:
        used_style_feats = Y

    remd = torch.max(m1.mean(),m2.mean())

    return remd, used_style_feats
Example #2
0
def remd_loss_g(X,
                Y,
                GX,
                GY,
                h=1.0,
                splits=[3 + 64 + 64 + 128 + 128 + 256 + 256 + 256 + 512 + 512
                        ]):

    d = X.size(1)

    if d == 3:
        X = utils.rgb_to_yuv_pc(X.transpose(0, 1).contiguous().view(
            d, -1)).transpose(0, 1)
        Y = utils.rgb_to_yuv_pc(Y.transpose(0, 1).contiguous().view(
            d, -1)).transpose(0, 1)
        GX = utils.rgb_to_yuv_pc(GX.transpose(0, 1).contiguous().view(
            d, -1)).transpose(0, 1)
        GY = utils.rgb_to_yuv_pc(GY.transpose(0, 1).contiguous().view(
            d, -1)).transpose(0, 1)

    else:
        X = X.transpose(0, 1).contiguous().view(d, -1).transpose(0, 1)
        Y = Y.transpose(0, 1).contiguous().view(d, -1).transpose(0, 1)
        GX = GX.transpose(0, 1).contiguous().view(d, -1).transpose(0, 1)
        GY = GY.transpose(0, 1).contiguous().view(d, -1).transpose(0, 1)

    c1 = 10000.
    c2 = 1.

    CX_M = get_DMat(X, Y, 1., cos_d=True, splits=splits)

    if d == 3:
        CX_M = CX_M + get_DMat(X, Y, 1., cos_d=False, splits=splits)

    CX_M_2 = get_DMat(GX, GY, 1., cos_d=True, splits=splits) + get_DMat(
        GX, GY, 1., cos_d=False, splits=splits)  #CX_M[i:,i:].clone()
    for i in range(GX.size(0) - 1):
        CX_M_2[(i + 1):, i] = CX_M_2[(i + 1):, i] * 1000.
        CX_M_2[i, (i + 1):] = CX_M_2[i, (i + 1):] * 1000.

    m1, m1_inds = CX_M.min(1)
    m2, m2_inds = CX_M.min(0)
    m2, min_inds = torch.topk(m2, m1.size(0), largest=False)

    if m1.mean() > m2.mean():
        used_style_feats = Y[m1_inds, :]
    else:
        used_style_feats = Y[min_inds, :]

    m12, _ = CX_M_2.min(1)
    m22, _ = CX_M_2.min(0)

    used_style_feats = Y[m1_inds, :]
    remd = torch.max(m1.mean() * h,
                     m2.mean()) + c2 * torch.max(m12.mean() * h, m22.mean())

    return remd, used_style_feats