Example #1
0
def train(rank, a, h):
    if h.num_gpus > 1:
        init_process_group(backend=h.dist_config['dist_backend'],
                           init_method=h.dist_config['dist_url'],
                           world_size=h.dist_config['world_size'] * h.num_gpus,
                           rank=rank)

    torch.cuda.manual_seed(h.seed)
    torch.cuda.set_device(rank)
    device = torch.device('cuda:{:d}'.format(rank))

    generator = Generator(h).to(device)
    mpd = MultiPeriodDiscriminator().to(device)
    msd = MultiScaleDiscriminator().to(device)

    if rank == 0:
        print(generator)
        os.makedirs(a.checkpoint_path, exist_ok=True)
        print("checkpoints directory : ", a.checkpoint_path)

    if os.path.isdir(a.checkpoint_path):
        cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
        cp_do = scan_checkpoint(a.checkpoint_path, 'do_')

    steps = 0
    if cp_g is None or cp_do is None:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_g = load_checkpoint(cp_g, device)
        state_dict_do = load_checkpoint(cp_do, device)
        generator.load_state_dict(state_dict_g['generator'])
        mpd.load_state_dict(state_dict_do['mpd'])
        msd.load_state_dict(state_dict_do['msd'])
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']

    if h.num_gpus > 1:
        generator = DistributedDataParallel(generator,
                                            device_ids=[rank]).to(device)
        mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
        msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)

    optim_g = torch.optim.AdamW(generator.parameters(),
                                h.learning_rate,
                                betas=[h.adam_b1, h.adam_b2])
    optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(),
                                                mpd.parameters()),
                                h.learning_rate,
                                betas=[h.adam_b1, h.adam_b2])

    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g,
                                                         gamma=h.lr_decay,
                                                         last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d,
                                                         gamma=h.lr_decay,
                                                         last_epoch=last_epoch)

    training_filelist, validation_filelist = get_dataset_filelist(a)

    trainset = MelDataset(training_filelist,
                          h.segment_size,
                          h.n_fft,
                          h.num_mels,
                          h.hop_size,
                          h.win_size,
                          h.sampling_rate,
                          h.fmin,
                          h.fmax,
                          n_cache_reuse=0,
                          shuffle=False if h.num_gpus > 1 else True,
                          fmax_loss=h.fmax_for_loss,
                          device=device,
                          fine_tuning=a.fine_tuning,
                          base_mels_path=a.input_mels_dir)

    train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None

    train_loader = DataLoader(trainset,
                              num_workers=h.num_workers,
                              shuffle=False,
                              sampler=train_sampler,
                              batch_size=h.batch_size,
                              pin_memory=True,
                              drop_last=True)

    if rank == 0:
        validset = MelDataset(validation_filelist,
                              h.segment_size,
                              h.n_fft,
                              h.num_mels,
                              h.hop_size,
                              h.win_size,
                              h.sampling_rate,
                              h.fmin,
                              h.fmax,
                              False,
                              False,
                              n_cache_reuse=0,
                              fmax_loss=h.fmax_for_loss,
                              device=device,
                              fine_tuning=a.fine_tuning,
                              base_mels_path=a.input_mels_dir)
        validation_loader = DataLoader(validset,
                                       num_workers=1,
                                       shuffle=False,
                                       sampler=None,
                                       batch_size=1,
                                       pin_memory=True,
                                       drop_last=True)

        sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))

    generator.train()
    mpd.train()
    msd.train()
    for epoch in range(max(0, last_epoch), a.training_epochs):
        if rank == 0:
            start = time.time()
            print("Epoch: {}".format(epoch + 1))

        if h.num_gpus > 1:
            train_sampler.set_epoch(epoch)

        for i, batch in enumerate(train_loader):
            if rank == 0:
                start_b = time.time()
            x, y, _, y_mel = batch
            x = torch.autograd.Variable(x.to(device, non_blocking=True))
            y = torch.autograd.Variable(y.to(device, non_blocking=True))
            y_mel = torch.autograd.Variable(y_mel.to(device,
                                                     non_blocking=True))
            y = y.unsqueeze(1)

            y_g_hat = generator(x)
            y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft,
                                          h.num_mels, h.sampling_rate,
                                          h.hop_size, h.win_size, h.fmin,
                                          h.fmax_for_loss)

            optim_d.zero_grad()

            # MPD
            y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
            loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
                y_df_hat_r, y_df_hat_g)

            # MSD
            y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
            loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
                y_ds_hat_r, y_ds_hat_g)

            loss_disc_all = loss_disc_s + loss_disc_f

            loss_disc_all.backward()
            optim_d.step()

            # Generator
            optim_g.zero_grad()

            # L1 Mel-Spectrogram Loss
            loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45

            y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
            y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
            loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
            loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
            loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
            loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
            loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel

            loss_gen_all.backward()
            optim_g.step()

            if rank == 0:
                # STDOUT logging
                if steps % a.stdout_interval == 0:
                    with torch.no_grad():
                        mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()

                    print(
                        'Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'
                        .format(steps, loss_gen_all, mel_error,
                                time.time() - start_b))

                # checkpointing
                if steps % a.checkpoint_interval == 0 and steps != 0:
                    checkpoint_path = "{}/g_{:08d}".format(
                        a.checkpoint_path, steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'generator': (generator.module if h.num_gpus > 1
                                          else generator).state_dict()
                        })
                    checkpoint_path = "{}/do_{:08d}".format(
                        a.checkpoint_path, steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'mpd': (mpd.module
                                    if h.num_gpus > 1 else mpd).state_dict(),
                            'msd': (msd.module
                                    if h.num_gpus > 1 else msd).state_dict(),
                            'optim_g':
                            optim_g.state_dict(),
                            'optim_d':
                            optim_d.state_dict(),
                            'steps':
                            steps,
                            'epoch':
                            epoch
                        })

                # Tensorboard summary logging
                if steps % a.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", loss_gen_all,
                                  steps)
                    sw.add_scalar("training/mel_spec_error", mel_error, steps)

                # Validation
                if steps % a.validation_interval == 0:  # and steps != 0:
                    generator.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    with torch.no_grad():
                        for j, batch in enumerate(validation_loader):
                            x, y, _, y_mel = batch
                            y_g_hat = generator(x.to(device))
                            y_mel = torch.autograd.Variable(
                                y_mel.to(device, non_blocking=True))
                            y_g_hat_mel = mel_spectrogram(
                                y_g_hat.squeeze(1), h.n_fft, h.num_mels,
                                h.sampling_rate, h.hop_size, h.win_size,
                                h.fmin, h.fmax_for_loss)
                            val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()

                            if j <= 4:
                                if steps == 0:
                                    sw.add_audio('gt/y_{}'.format(j), y[0],
                                                 steps, h.sampling_rate)
                                    sw.add_figure('gt/y_spec_{}'.format(j),
                                                  plot_spectrogram(x[0]),
                                                  steps)

                                sw.add_audio('generated/y_hat_{}'.format(j),
                                             y_g_hat[0], steps,
                                             h.sampling_rate)
                                y_hat_spec = mel_spectrogram(
                                    y_g_hat.squeeze(1), h.n_fft, h.num_mels,
                                    h.sampling_rate, h.hop_size, h.win_size,
                                    h.fmin, h.fmax)
                                sw.add_figure(
                                    'generated/y_hat_spec_{}'.format(j),
                                    plot_spectrogram(
                                        y_hat_spec.squeeze(0).cpu().numpy()),
                                    steps)

                        val_err = val_err_tot / (j + 1)
                        sw.add_scalar("validation/mel_spec_error", val_err,
                                      steps)

                    generator.train()

            steps += 1

        scheduler_g.step()
        scheduler_d.step()

        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(
                epoch + 1, int(time.time() - start)))
Example #2
0
def train(rank, a, h):
    if h.num_gpus > 1:
        init_process_group(backend=h.dist_config['dist_backend'],
                           init_method=h.dist_config['dist_url'],
                           world_size=h.dist_config['world_size'] * h.num_gpus,
                           rank=rank)

    torch.cuda.manual_seed(h.seed)
    device = torch.device('cuda:{:d}'.format(rank))

    generator = Generator(h).to(device)
    mpd = MultiPeriodDiscriminator(
        h["discriminator_periods"] if "discriminator_periods" in
        h.keys() else None).to(device)
    msd = MultiScaleDiscriminator().to(device)

    if rank == 0:
        print(generator)
        os.makedirs(a.checkpoint_path, exist_ok=True)
        print("checkpoints directory : ", a.checkpoint_path)

    if os.path.isdir(a.checkpoint_path):
        cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
        cp_do = scan_checkpoint(a.checkpoint_path, 'do_')

    steps = 0
    if cp_g is not None:
        state_dict_g = load_checkpoint(cp_g, device)
        gsd = generator.state_dict()
        gsd.update({
            k: v
            for k, v in state_dict_g['generator'].items()
            if k in gsd and state_dict_g['generator'][k].shape == gsd[k].shape
        })
        missing_keys = {
            k: v
            for k, v in state_dict_g['generator'].items()
            if not (k in gsd
                    and state_dict_g['generator'][k].shape == gsd[k].shape)
        }.keys()
        generator.load_state_dict(gsd)
        del gsd, state_dict_g

    if cp_do is None or len(missing_keys) or a.from_zero:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_do = load_checkpoint(cp_do, device)
        mpd.load_state_dict(state_dict_do['mpd'])
        del state_dict_do['mpd']
        msd.load_state_dict(state_dict_do['msd'])
        del state_dict_do['msd']
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']

    if h.num_gpus > 1:
        generator = DistributedDataParallel(generator,
                                            device_ids=[rank]).to(device)
        mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
        msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)

    optim_g = torch.optim.AdamW(generator.parameters(),
                                h.learning_rate,
                                betas=[h.adam_b1, h.adam_b2])
    optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(),
                                                mpd.parameters()),
                                h.learning_rate,
                                betas=[h.adam_b1, h.adam_b2])

    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])
        del state_dict_do

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g,
                                                         gamma=h.lr_decay,
                                                         last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d,
                                                         gamma=h.lr_decay,
                                                         last_epoch=last_epoch)

    training_filelist, validation_filelist = get_dataset_filelist(
        a, h.segment_size, h.sampling_rate)

    trainset = MelDataset(training_filelist,
                          h.segment_size,
                          h.n_fft,
                          h.num_mels,
                          h.hop_size,
                          h.win_size,
                          h.sampling_rate,
                          h.fmin,
                          h.fmax,
                          n_cache_reuse=0,
                          shuffle=False if h.num_gpus > 1 else True,
                          fmax_loss=h.fmax_for_loss,
                          device=device,
                          fine_tuning=a.fine_tuning,
                          trim_non_voiced=a.trim_non_voiced)

    STFT = STFT_Class(h.sampling_rate, h.num_mels, h.n_fft, h.win_size,
                      h.hop_size, h.fmin, h.fmax)

    train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None

    train_loader = DataLoader(trainset,
                              num_workers=h.num_workers,
                              shuffle=False,
                              sampler=train_sampler,
                              batch_size=h.batch_size,
                              pin_memory=True,
                              drop_last=True)
    assert len(train_loader), 'No audio files in dataset!'

    if rank == 0:
        validset = MelDataset(validation_filelist,
                              h.segment_size,
                              h.n_fft,
                              h.num_mels,
                              h.hop_size,
                              h.win_size,
                              h.sampling_rate,
                              h.fmin,
                              h.fmax,
                              False,
                              False,
                              n_cache_reuse=0,
                              fmax_loss=h.fmax_for_loss,
                              device=device,
                              fine_tuning=a.fine_tuning,
                              trim_non_voiced=a.trim_non_voiced)
        validation_loader = DataLoader(validset,
                                       num_workers=h.num_workers,
                                       shuffle=False,
                                       sampler=None,
                                       batch_size=1,
                                       pin_memory=True,
                                       drop_last=True)

        sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'),
                           max_queue=10000)
        sw.logged_gt_plots = False

    if h.num_gpus > 1:
        import gc
        gc.collect()
        torch.cuda.empty_cache()

    generator.train()
    mpd.train()
    msd.train()
    for epoch in range(max(0, last_epoch), a.training_epochs):
        if rank == 0:
            start = time.time()
            print("Epoch: {}".format(epoch + 1))

        if h.num_gpus > 1:
            train_sampler.set_epoch(epoch)

        for i, batch in enumerate(train_loader):
            if rank == 0:
                start_b = time.time()
            x, y, _, y_mel = batch
            x = torch.autograd.Variable(x.to(device, non_blocking=True))
            y = torch.autograd.Variable(y.to(device, non_blocking=True))
            y_mel = torch.autograd.Variable(y_mel.to(device,
                                                     non_blocking=True))
            y = y.unsqueeze(1)

            y_g_hat = generator(x)
            y_g_hat_mel = STFT.get_mel(y_g_hat.squeeze(1))

            optim_d.zero_grad()

            # MPD
            y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
            loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
                y_df_hat_r, y_df_hat_g)

            # MSD
            y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
            loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
                y_ds_hat_r, y_ds_hat_g)

            loss_disc_all = loss_disc_s + loss_disc_f

            loss_disc_all.backward()
            optim_d.step()

            # Generator
            optim_g.zero_grad()

            # L1 Mel-Spectrogram Loss
            loss_mel = F.l1_loss(y_mel, y_g_hat_mel)

            y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
            y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
            loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
            loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
            loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
            loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
            loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel * 45

            loss_gen_all.backward()
            optim_g.step()

            if rank == 0:
                torch.set_grad_enabled(False)
                # STDOUT logging
                if steps % a.stdout_interval == 0:
                    print(
                        'Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'
                        .format(steps, loss_gen_all, loss_mel.item(),
                                time.time() - start_b))

                # checkpointing
                if steps % a.checkpoint_interval == 0 and steps != 0:
                    checkpoint_path = "{}/g_{:08d}".format(
                        a.checkpoint_path, steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'generator': (generator.module if h.num_gpus > 1
                                          else generator).state_dict()
                        })
                    checkpoint_path = "{}/do_{:08d}".format(
                        a.checkpoint_path, steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'mpd': (mpd.module
                                    if h.num_gpus > 1 else mpd).state_dict(),
                            'msd': (msd.module
                                    if h.num_gpus > 1 else msd).state_dict(),
                            'optim_g':
                            optim_g.state_dict(),
                            'optim_d':
                            optim_d.state_dict(),
                            'steps':
                            steps,
                            'epoch':
                            epoch
                        })
                    del_old_checkpoints(a.checkpoint_path, 'g_',
                                        a.n_models_to_keep)
                    del_old_checkpoints(a.checkpoint_path, 'do_',
                                        a.n_models_to_keep)

                # Tensorboard summary logging
                if steps % a.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", loss_gen_all,
                                  steps)
                    sw.add_scalar("training/mel_spec_error", loss_mel.item(),
                                  steps)

                # Validation
                if steps % a.validation_interval == 0:  # and steps != 0:
                    print("Validating...")
                    n_audios_to_plot = 6
                    generator.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    for j, batch in tqdm(enumerate(validation_loader),
                                         total=len(validation_loader)):
                        x, y, _, y_mel = batch
                        y_g_hat = generator(x.to(device))
                        y_hat_spec = STFT.get_mel(y_g_hat.squeeze(1))
                        val_err_tot += F.l1_loss(y_mel,
                                                 y_hat_spec.to(y_mel)).item()

                        if j < n_audios_to_plot and not sw.logged_gt_plots:
                            sw.add_audio(f'gt/y_{j}', y[0], steps,
                                         h.sampling_rate)
                            sw.add_figure(f'spec_{j:02}/gt_spec',
                                          plot_spectrogram(y_mel[0]), steps)
                        if j < n_audios_to_plot:
                            sw.add_audio(f'generated/y_hat_{j}', y_g_hat[0],
                                         steps, h.sampling_rate)
                            sw.add_figure(
                                f'spec_{j:02}/pred_spec',
                                plot_spectrogram(
                                    y_hat_spec.squeeze(0).cpu().numpy()),
                                steps)

                        if j > 64:  # I am NOT patient enough to complete an entire validation cycle with over 1536 files.
                            break
                    sw.logged_gt_plots = True
                    val_err = val_err_tot / (j + 1)
                    sw.add_scalar("validation/mel_spec_error", val_err, steps)
                    generator.train()
                    print(f"Done. Val_loss = {val_err}")
                torch.set_grad_enabled(True)
            steps += 1

        scheduler_g.step()
        scheduler_d.step()

        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(
                epoch + 1, int(time.time() - start)))
Example #3
0
def train(rank, args, hp, hp_str):
    # if hp.train.num_gpus > 1:
    #     init_process_group(backend=hp.dist.dist_backend, init_method=hp.dist.dist_url,
    #                        world_size=hp.dist.world_size * hp.train.num_gpus, rank=rank)

    torch.cuda.manual_seed(hp.train.seed)
    device = torch.device('cuda:{:d}'.format(rank))

    generator = Generator(hp.model.in_channels,
                          hp.model.out_channels).to(device)
    specd = SpecDiscriminator().to(device)
    msd = MultiScaleDiscriminator().to(device)
    stft_loss = MultiResolutionSTFTLoss()

    if rank == 0:
        print(generator)
        os.makedirs(hp.logs.chkpt_dir, exist_ok=True)
        print("checkpoints directory : ", hp.logs.chkpt_dir)

    if os.path.isdir(hp.logs.chkpt_dir):
        cp_g = scan_checkpoint(hp.logs.chkpt_dir, 'g_')
        cp_do = scan_checkpoint(hp.logs.chkpt_dir, 'do_')

    steps = 0
    if cp_g is None or cp_do is None:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_g = load_checkpoint(cp_g, device)
        state_dict_do = load_checkpoint(cp_do, device)
        generator.load_state_dict(state_dict_g['generator'])
        specd.load_state_dict(state_dict_do['specd'])
        msd.load_state_dict(state_dict_do['msd'])
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']

    if hp.train.num_gpus > 1:
        generator = DistributedDataParallel(generator,
                                            device_ids=[rank]).to(device)
        specd = DistributedDataParallel(specd, device_ids=[rank]).to(device)
        msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)

    optim_g = torch.optim.AdamW(
        generator.parameters(),
        hp.train.adamG.lr,
        betas=[hp.train.adamG.beta1, hp.train.adamG.beta2])
    optim_d = torch.optim.AdamW(
        itertools.chain(msd.parameters(), specd.parameters()),
        hp.train.adamD.lr,
        betas=[hp.train.adamD.beta1, hp.train.adamD.beta2])

    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])

    # scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hp.train.adam.lr_decay, last_epoch=last_epoch)
    # scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hp.train.adam.lr_decay, last_epoch=last_epoch)

    training_filelist, validation_filelist = get_dataset_filelist(args)

    trainset = MelDataset(training_filelist,
                          hp.data.input_wavs,
                          hp.data.output_wavs,
                          hp.audio.segment_length,
                          hp.audio.filter_length,
                          hp.audio.n_mel_channels,
                          hp.audio.hop_length,
                          hp.audio.win_length,
                          hp.audio.sampling_rate,
                          hp.audio.mel_fmin,
                          hp.audio.mel_fmax,
                          n_cache_reuse=0,
                          shuffle=False if hp.train.num_gpus > 1 else True,
                          fmax_loss=None,
                          device=device)

    train_sampler = DistributedSampler(
        trainset) if hp.train.num_gpus > 1 else None

    train_loader = DataLoader(trainset,
                              num_workers=hp.train.num_workers,
                              shuffle=False,
                              sampler=train_sampler,
                              batch_size=hp.train.batch_size,
                              pin_memory=True,
                              drop_last=True)

    if rank == 0:
        validset = MelDataset(validation_filelist,
                              hp.data.input_wavs,
                              hp.data.output_wavs,
                              hp.audio.segment_length,
                              hp.audio.filter_length,
                              hp.audio.n_mel_channels,
                              hp.audio.hop_length,
                              hp.audio.win_length,
                              hp.audio.sampling_rate,
                              hp.audio.mel_fmin,
                              hp.audio.mel_fmax,
                              split=False,
                              shuffle=False,
                              n_cache_reuse=0,
                              fmax_loss=None,
                              device=device)
        validation_loader = DataLoader(validset,
                                       num_workers=1,
                                       shuffle=False,
                                       sampler=None,
                                       batch_size=1,
                                       pin_memory=True,
                                       drop_last=True)

        sw = SummaryWriter(os.path.join(hp.logs.chkpt_dir, 'logs'))

    generator.train()
    specd.train()
    msd.train()
    with_postnet = False
    for epoch in range(max(0, last_epoch), args.training_epochs):
        if rank == 0:
            start = time.time()
            print("Epoch: {}".format(epoch + 1))

        if hp.train.num_gpus > 1:
            train_sampler.set_epoch(epoch)

        for i, batch in enumerate(train_loader):
            if rank == 0:
                start_b = time.time()
            if steps > hp.train.postnet_start_steps:
                with_postnet = True
            x, y, file, _, y_mel_loss = batch
            x = torch.autograd.Variable(x.to(device, non_blocking=True))
            y = torch.autograd.Variable(y.to(device, non_blocking=True))
            y_mel_loss = torch.autograd.Variable(
                y_mel_loss.to(device, non_blocking=True))
            # y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
            x = x.unsqueeze(1)
            y = y.unsqueeze(1)
            before_y_g_hat, y_g_hat = generator(x, with_postnet)

            if y_g_hat is not None:
                y_g_hat_mel = mel_spectrogram(
                    y_g_hat.squeeze(1), hp.audio.filter_length,
                    hp.audio.n_mel_channels, hp.audio.sampling_rate,
                    hp.audio.hop_length, hp.audio.win_length,
                    hp.audio.mel_fmin, None)

            if steps > hp.train.discriminator_train_start_steps:
                for _ in range(hp.train.rep_discriminator):
                    optim_d.zero_grad()

                    # SpecD
                    y_df_hat_r, y_df_hat_g, _, _ = specd(
                        y_mel_loss, y_g_hat_mel.detach())
                    loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
                        y_df_hat_r, y_df_hat_g)

                    # MSD
                    y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
                    loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
                        y_ds_hat_r, y_ds_hat_g)

                    loss_disc_all = loss_disc_s + loss_disc_f

                    loss_disc_all.backward()
                    optim_d.step()

            before_y_g_hat_mel = mel_spectrogram(
                before_y_g_hat.squeeze(1), hp.audio.filter_length,
                hp.audio.n_mel_channels, hp.audio.sampling_rate,
                hp.audio.hop_length, hp.audio.win_length, hp.audio.mel_fmin,
                None)
            # Generator
            optim_g.zero_grad()

            # L1 Mel-Spectrogram Loss
            # before_loss_mel = F.l1_loss(y_mel_loss, before_y_g_hat_mel)
            sc_loss, mag_loss = stft_loss(
                before_y_g_hat[:, :, :y.size(2)].squeeze(1), y.squeeze(1))
            before_loss_mel = sc_loss + mag_loss

            # L1 Sample Loss
            before_loss_sample = F.l1_loss(y, before_y_g_hat)
            loss_gen_all = before_loss_mel + before_loss_sample

            if y_g_hat is not None:
                # L1 Mel-Spectrogram Loss
                # loss_mel = F.l1_loss(y_mel_loss, y_g_hat_mel)
                sc_loss_, mag_loss_ = stft_loss(
                    y_g_hat[:, :, :y.size(2)].squeeze(1), y.squeeze(1))
                loss_mel = sc_loss_ + mag_loss_
                # L1 Sample Loss
                loss_sample = F.l1_loss(y, y_g_hat)
                loss_gen_all += loss_mel + loss_sample

            if steps > hp.train.discriminator_train_start_steps:
                y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = specd(
                    y_mel_loss, y_g_hat_mel)
                y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
                loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
                loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
                loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
                loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
                loss_gen_all += hp.model.lambda_adv * (
                    loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f)

            loss_gen_all.backward()
            optim_g.step()

            if rank == 0:
                # STDOUT logging
                if steps % args.stdout_interval == 0:
                    with torch.no_grad():
                        mel_error = F.l1_loss(y_mel_loss,
                                              before_y_g_hat_mel).item()
                        sample_error = F.l1_loss(y, before_y_g_hat)

                    print(
                        'Steps : {:d}, Gen Loss Total : {:4.3f}, Sample Error: {:4.3f}, '
                        'Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.format(
                            steps, loss_gen_all, sample_error, mel_error,
                            time.time() - start_b))

                # checkpointing
                if steps % hp.logs.save_interval == 0 and steps != 0:
                    checkpoint_path = "{}/g_{:08d}".format(
                        hp.logs.chkpt_dir, steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'generator':
                            (generator.module if hp.train.num_gpus > 1 else
                             generator).state_dict()
                        })
                    checkpoint_path = "{}/do_{:08d}".format(
                        hp.logs.chkpt_dir, steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'specd': (specd.module if hp.train.num_gpus > 1
                                      else specd).state_dict(),
                            'msd': (msd.module if hp.train.num_gpus > 1 else
                                    msd).state_dict(),
                            'optim_g':
                            optim_g.state_dict(),
                            'optim_d':
                            optim_d.state_dict(),
                            'steps':
                            steps,
                            'epoch':
                            epoch,
                            'hp_str':
                            hp_str
                        })

                # Tensorboard summary logging
                if steps % hp.logs.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", loss_gen_all,
                                  steps)
                    sw.add_scalar("training/mel_spec_error", mel_error, steps)

                # Validation
                if steps % hp.logs.validation_interval == 0:  # and steps != 0:
                    generator.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    with torch.no_grad():
                        for j, batch in enumerate(validation_loader):
                            x, y, file, y_mel, y_mel_loss = batch
                            x = x.unsqueeze(1)
                            y = y.unsqueeze(1).to(device)
                            before_y_g_hat, y_g_hat = generator(x.to(device))
                            y_mel_loss = torch.autograd.Variable(
                                y_mel_loss.to(device, non_blocking=True))
                            y_g_hat_mel = mel_spectrogram(
                                before_y_g_hat.squeeze(1),
                                hp.audio.filter_length,
                                hp.audio.n_mel_channels,
                                hp.audio.sampling_rate, hp.audio.hop_length,
                                hp.audio.win_length, hp.audio.mel_fmin, None)
                            val_err_tot += F.l1_loss(y_mel_loss,
                                                     y_g_hat_mel).item()
                            val_err_tot += F.l1_loss(y, before_y_g_hat).item()
                            if y_g_hat is not None:
                                val_err_tot += F.l1_loss(y, y_g_hat).item()

                            if j <= 4:
                                if steps == 0:
                                    sw.add_audio('gt_noise/y_{}'.format(j),
                                                 x[0], steps,
                                                 hp.audio.sampling_rate)
                                    sw.add_audio('gt_clean/y_{}'.format(j),
                                                 y[0], steps,
                                                 hp.audio.sampling_rate)
                                    sw.add_figure(
                                        'gt/y_spec_clean_{}'.format(j),
                                        plot_spectrogram(y_mel[0]), steps)

                                sw.add_audio('generated/y_hat_{}'.format(j),
                                             before_y_g_hat[0], steps,
                                             hp.audio.sampling_rate)
                                if y_g_hat is not None:
                                    sw.add_audio(
                                        'generated/y_hat_after_{}'.format(j),
                                        y_g_hat[0], steps,
                                        hp.audio.sampling_rate)
                                y_hat_spec = mel_spectrogram(
                                    before_y_g_hat.squeeze(1),
                                    hp.audio.filter_length,
                                    hp.audio.n_mel_channels,
                                    hp.audio.sampling_rate,
                                    hp.audio.hop_length, hp.audio.win_length,
                                    hp.audio.mel_fmin, None)
                                sw.add_figure(
                                    'generated/y_hat_spec_{}'.format(j),
                                    plot_spectrogram(
                                        y_hat_spec.squeeze(0).cpu().numpy()),
                                    steps)

                        val_err = val_err_tot / (j + 1)
                        sw.add_scalar("validation/mel_spec_error", val_err,
                                      steps)

                    generator.train()

            steps += 1

        # scheduler_g.step()
        # scheduler_d.step()

        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(
                epoch + 1, int(time.time() - start)))
Example #4
0
def train(rank: int, cfg: DictConfig):
    print(OmegaConf.to_yaml(cfg))

    if cfg.train.n_gpu > 1:
        init_process_group(backend=cfg.train.dist_config['dist_backend'],
                           init_method=cfg.train.dist_config['dist_url'],
                           world_size=cfg.train.dist_config['world_size'] *
                           cfg.train.n_gpu,
                           rank=rank)

    device = torch.device(
        'cuda:{:d}'.format(rank) if torch.cuda.is_available() else 'cpu')

    generator = Generator(sum(cfg.model.feature_dims), *cfg.model.cond_dims,
                          **cfg.model.generator).to(device)
    discriminator = Discriminator(**cfg.model.discriminator).to(device)

    if rank == 0:
        print(generator)
        os.makedirs(cfg.train.ckpt_dir, exist_ok=True)
        print("checkpoints directory : ", cfg.train.ckpt_dir)

    if os.path.isdir(cfg.train.ckpt_dir):
        cp_g = scan_checkpoint(cfg.train.ckpt_dir, 'g_')
        cp_do = scan_checkpoint(cfg.train.ckpt_dir, 'd_')

    steps = 1
    if cp_g is None or cp_do is None:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_g = load_checkpoint(cp_g, device)
        state_dict_do = load_checkpoint(cp_do, device)
        generator.load_state_dict(state_dict_g['generator'])
        discriminator.load_state_dict(state_dict_do['discriminator'])
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']

    if cfg.train.n_gpu > 1:
        generator = DistributedDataParallel(generator,
                                            device_ids=[rank]).to(device)
        discriminator = DistributedDataParallel(discriminator,
                                                device_ids=[rank]).to(device)

    optim_g = RAdam(generator.parameters(), cfg.opt.lr, betas=cfg.opt.betas)
    optim_d = RAdam(discriminator.parameters(),
                    cfg.opt.lr,
                    betas=cfg.opt.betas)

    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optim_g, gamma=cfg.opt.lr_decay, last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
        optim_d, gamma=cfg.opt.lr_decay, last_epoch=last_epoch)

    train_filelist = load_dataset_filelist(cfg.dataset.train_list)
    trainset = FeatureDataset(cfg.dataset, train_filelist, cfg.data)
    train_sampler = DistributedSampler(
        trainset) if cfg.train.n_gpu > 1 else None
    train_loader = DataLoader(trainset,
                              batch_size=cfg.train.batch_size,
                              num_workers=cfg.train.num_workers,
                              shuffle=True,
                              sampler=train_sampler,
                              pin_memory=True,
                              drop_last=True)

    if rank == 0:
        val_filelist = load_dataset_filelist(cfg.dataset.test_list)
        valset = FeatureDataset(cfg.dataset,
                                val_filelist,
                                cfg.data,
                                segmented=False)
        val_loader = DataLoader(valset,
                                batch_size=1,
                                num_workers=cfg.train.num_workers,
                                shuffle=False,
                                sampler=train_sampler,
                                pin_memory=True)

        sw = SummaryWriter(os.path.join(cfg.train.ckpt_dir, 'logs'))

    generator.train()
    discriminator.train()
    for epoch in range(max(0, last_epoch), cfg.train.epochs):
        if rank == 0:
            start = time.time()
            print("Epoch: {}".format(epoch + 1))

        if cfg.train.n_gpu > 1:
            train_sampler.set_epoch(epoch)

        for y, x_noised_features, x_noised_cond in train_loader:
            if rank == 0:
                start_b = time.time()

            y = y.to(device, non_blocking=True)
            x_noised_features = x_noised_features.transpose(1, 2).to(
                device, non_blocking=True)
            x_noised_cond = x_noised_cond.to(device, non_blocking=True)
            z1 = torch.randn(cfg.train.batch_size,
                             cfg.model.cond_dims[1],
                             device=device)
            z2 = torch.randn(cfg.train.batch_size,
                             cfg.model.cond_dims[1],
                             device=device)

            y_hat1 = generator(x_noised_features, x_noised_cond, z=z1)
            y_hat2 = generator(x_noised_features, x_noised_cond, z=z2)

            # Discriminator
            real_scores, fake_scores = discriminator(y), discriminator(
                y_hat1.detach())
            d_loss = discriminator_loss(real_scores, fake_scores)

            optim_d.zero_grad()
            d_loss.backward(retain_graph=True)
            optim_d.step()

            # Generator
            g_stft_loss = criterion(y, y_hat1) + criterion(
                y, y_hat2) - criterion(y_hat1, y_hat2)
            g_adv_loss = adversarial_loss(fake_scores)
            g_loss = g_adv_loss + g_stft_loss

            optim_g.zero_grad()
            g_loss.backward()
            optim_g.step()

            if rank == 0:
                # STDOUT logging
                if steps % cfg.train.stdout_interval == 0:
                    with torch.no_grad():
                        print(
                            'Steps : {:d}, Gen Loss Total : {:4.3f}, STFT Error : {:4.3f}, s/b : {:4.3f}'
                            .format(steps, g_loss, g_stft_loss,
                                    time.time() - start_b))

                # checkpointing
                if steps % cfg.train.checkpoint_interval == 0:
                    ckpt_dir = "{}/g_{:08d}".format(cfg.train.ckpt_dir, steps)
                    save_checkpoint(
                        ckpt_dir, {
                            'generator':
                            (generator.module if cfg.train.n_gpu > 1 else
                             generator).state_dict()
                        })
                    ckpt_dir = "{}/do_{:08d}".format(cfg.train.ckpt_dir, steps)
                    save_checkpoint(
                        ckpt_dir, {
                            'discriminator':
                            (discriminator.module if cfg.train.n_gpu > 1 else
                             discriminator).state_dict(),
                            'optim_g':
                            optim_g.state_dict(),
                            'optim_d':
                            optim_d.state_dict(),
                            'steps':
                            steps,
                            'epoch':
                            epoch
                        })

                # Tensorboard summary logging
                if steps % cfg.train.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", g_loss, steps)
                    sw.add_scalar("training/gen_stft_error", g_stft_loss,
                                  steps)

                # Validation
                if steps % cfg.train.validation_interval == 0:
                    generator.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    with torch.no_grad():
                        for j, (y, x_noised_features,
                                x_noised_cond) in enumerate(val_loader):
                            y_hat = generator(
                                x_noised_features.transpose(1, 2).to(device),
                                x_noised_cond.to(device))
                            val_err_tot += criterion(y, y_hat).item()

                            if j <= 4:
                                # sw.add_audio('noised/y_noised_{}'.format(j), y_noised[0], steps, cfg.data.target_sample_rate)
                                sw.add_audio('generated/y_hat_{}'.format(j),
                                             y_hat[0], steps,
                                             cfg.data.sample_rate)
                                sw.add_audio('gt/y_{}'.format(j), y[0], steps,
                                             cfg.data.sample_rate)

                        val_err = val_err_tot / (j + 1)
                        sw.add_scalar("validation/stft_error", val_err, steps)

                    generator.train()

            steps += 1

        scheduler_g.step()
        scheduler_d.step()

        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(
                epoch + 1, int(time.time() - start)))