Example #1
0
def main():
    set_gpu('0')
    save_path = 'features/test_new_domain_miniimagenet/'
    test_set = ImageNet(root='../cross-domain-fsl/dataset/mini-imagenet/test_new_domain')
    val_loader = DataLoader(dataset=test_set, batch_size=1, shuffle=False, num_workers=8,
                            pin_memory=True)
    model = resnet50()
    model = torch.nn.DataParallel(model).cuda()
    model.load_state_dict(torch.load('save/proto-5/max-acc.pth'))

    # model_dict = model.state_dict()
    # pretrained_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')
    # # 1. filter out unnecessary keys
    # pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
    # # 2. overwrite entries in the existing state dict
    # print pretrained_dict
    # model_dict.update(pretrained_dict)
    # # 3. load the new state dict
    # model.load_state_dict(model_dict)
    model = model.cuda()
    model.eval()
    # model = torch.nn.DataParallel(model).cuda()
    features = [[] for i in range(359)]
    for (image, label) in val_loader:
        image = image.cuda()
        label = label.numpy()
        feature = model(image)
        feature = feature.data.cpu().numpy()
        # print feature.shape[0]
        for j in range(feature.shape[0]):
            features[int(label[j])].append(feature[j])
    for i in range(359):
        save_file = os.path.join(save_path, str(i)+'.txt')
        feature_np = np.asarray(features[i])
        np.savetxt(save_file, feature_np)
Example #2
0
    def __init__(self, model_ckpt, serve=False):

        utils.set_gpu(1)
        num_classes = 340
        image_size = 128
        self._is = image_size

        self.images = tf.placeholder(shape=[None, image_size, image_size, 1],
                                     dtype=tf.uint8)

        image_prep_fn = preprocessing_factory.get_preprocessing(
            'inception_v1', is_training=False)
        images_preped = image_prep_fn(self.images, None, None)

        class_logits, self.feat = fixed_model.build_net(
            images_preped, num_classes, False)

        self.class_probs = tf.nn.softmax(class_logits)
        #preds = tf.argmax(class_probs, axis=-1)

        saver = tf.train.Saver(tf.global_variables())
        self.sess = tf.Session()
        saver.restore(self.sess, model_ckpt)

        self.cls_id_map = pkl.load(file('class_id_map.pkl', 'rb'))
        self.id_cls_map = {}
        for k in self.cls_id_map:
            self.id_cls_map[self.cls_id_map[k]] = k

        if serve:
            self.serve_hint()
Example #3
0
def main(unused_argv):
    if os.path.exists(os.path.join(FLAGS.Ensemble_Models, "16_inference")):
        shutil.rmtree(os.path.join(FLAGS.Ensemble_Models, "16_inference"))
    utils.set_gpu(1)
    logging.set_verbosity(tf.logging.INFO)
    print("tensorflow version: %s" % tf.__version__)
    #with tf.device("/cpu:0"):
    evaluate()
Example #4
0
def main(opt: argparse.Namespace):
    # Configure environment
    utils.set_gpu(opt.gpu)
    device = torch.device("cuda")

    # Configure networks
    separation_model: nn.Module = SeparationNet(
        ResNetEncoder(1, [16, 32, 64, 128, 512]), ResNetDecoder(1),
        ResNetDecoder(1))
    completion_model: nn.Module = HourGlass(ResNetEncoder(1), ResNetDecoder(1))

    triplet_model: nn.Module = TripletNet(ResNetEncoder(1))

    # Load checkpoints
    separation_model.load_state_dict(
        torch.load(opt.model_path + "_separation.pt"))
    completion_model.load_state_dict(
        torch.load(opt.model_path + "_completion.pt"))
    triplet_model.load_state_dict(torch.load(opt.model_path + "_triplet.pt"))

    separation_model = separation_model.to(device)
    completion_model = completion_model.to(device)
    triplet_model = triplet_model.to(device)

    # Make sure models are in evaluation mode
    separation_model.eval()
    completion_model.eval()
    triplet_model.eval()

    # Compute domain confusion
    train_confusion_results = evaluate_confusion(
        separation_model, completion_model, triplet_model, device,
        opt.confusion_train_path, opt.scannet_path, opt.shapenet_path,
        opt.confusion_num_neighbors)
    print(train_confusion_results)

    val_confusion_results = evaluate_confusion(separation_model,
                                               completion_model, triplet_model,
                                               device, opt.confusion_val_path,
                                               opt.scannet_path,
                                               opt.shapenet_path,
                                               opt.confusion_num_neighbors)
    print(val_confusion_results)

    # Compute similarity metrics
    train_retrieval_accuracy = evaluate_similarity_metrics(
        separation_model, completion_model, triplet_model, device,
        opt.similarity_path, opt.scannet_path, opt.shapenet_path)
Example #5
0
def main() -> None:
    args = parse_arguments()

    u.set_gpu(args.gpu)

    # create output folder and save arguments in a .txt file
    outpath = os.path.join(
        './results/',
        args.outdir if args.outdir is not None else u.random_code())
    os.makedirs(outpath, exist_ok=True)
    print(colored('Saving to %s' % outpath, 'yellow'))
    u.write_args(os.path.join(outpath, 'args.txt'), args)

    # get a list of patches organized as dictionaries with image, mask and name fields
    patches = extract_patches(args)

    print(colored('Processing %d patches' % len(patches), 'yellow'))

    # instantiate a trainer
    T = Training(args, outpath)

    # interpolation
    for i, patch in enumerate(patches):

        print(
            colored('\nThe data shape is %s' % str(patch['image'].shape),
                    'cyan'))

        std = T.load_data(patch)
        print(colored('the std of coarse data is %.2e, ' % std, 'cyan'),
              end="")

        if np.isclose(std, 0., atol=1e-12):  # all the data are corrupted
            print(colored('skipping...', 'cyan'))
            T.out_best = T.img * T.mask
            T.elapsed = 0.
        else:
            # TODO add the transfer learning option
            if i == 0 or (args.start_from_prev and T.net is None):
                T.build_model()
            T.build_input()
            T.optimize()

        T.save_result()
        T.clean()

    print(colored('Interpolation done! Saved to %s' % outpath, 'yellow'))
Example #6
0
 def import_awa2_graph(self, awa2_weights, specific_split, att_weight):
     from images_graph_creator import Awa2GraphCreator, ImagesEmbeddings
     weights_dict = {
         'classes_edges': awa2_weights[0],
         'labels_edges': awa2_weights[1]
     }
     set_gpu(self.args.gpu)
     graph_preparation = ImagesEmbeddings(self.args)
     dict_name_class, dict_class_name = graph_preparation.dict_name_class, graph_preparation.dict_class_name
     seen_classes, unseen_classes = graph_preparation.seen_classes, graph_preparation.unseen_classes
     embeds_matrix, dict_image_embed, dict_image_class = graph_preparation.images_embed_calculator(
     )
     dict_idx_image_class = {
         i: dict_name_class[dict_image_class[image]]
         for i, image in enumerate(list(dict_image_class.keys()))
     }
     awa2_graph_creator = Awa2GraphCreator(embeds_matrix, dict_image_embed,
                                           dict_name_class,
                                           dict_idx_image_class,
                                           self.args.graph_percentage,
                                           self.args)
     image_graph = awa2_graph_creator.create_image_graph()
     kg, dict_class_nodes_translation = awa2_graph_creator.imagenet_knowledge_graph(
     )
     kg = awa2_graph_creator.attributed_graph(kg, att_weight)
     seen_classes = [dict_class_nodes_translation[c] for c in seen_classes]
     unseen_classes = [
         dict_class_nodes_translation[c] for c in unseen_classes
     ]
     split = {'seen': seen_classes, 'unseen': unseen_classes}
     labels_graph = awa2_graph_creator.create_labels_graph(
         dict_class_nodes_translation)
     awa2_graph = awa2_graph_creator.weighted_graph(image_graph, kg,
                                                    labels_graph,
                                                    weights_dict)
     nx.write_gpickle(awa2_graph, 'awa2/train/awa2_graph')
     if specific_split:
         return awa2_graph, split
     else:
         split = None
         return awa2_graph, split
Example #7
0
def test_proxnet(args):
    def load_proxnet(args):
        ckp = torch.load(args.net_path)
        alpha_learned = ckp['alpha']

        net = ProxNet(args).cuda()
        net.load_state_dict(ckp['net_state_dict'])
        net.alpha = torch.from_numpy(alpha_learned)
        net.eval()
        print('alpha={}'.format(net.alpha))
        return net

    operator = OperatorBatch(sampling=args.sampling.upper()).cuda()
    H, HT = operator.forward, operator.adjoint
    bloch = BLOCH().cuda()

    args.dtype = set_gpu(args.cuda)
    net = load_proxnet(args)
    batch_size = 1
    test_loader = torch.utils.data.DataLoader(dataset=data.MRFData(
        mod='test', sampling=args.sampling),
                                              batch_size=batch_size,
                                              shuffle=False)

    rmse_m, rmse_x, rmse_y = [], [], []
    rmse_torch = lambda a, b: torch.norm(a - b, 2).detach().cpu().numpy(
    ) / torch.norm(b, 2).detach().cpu().numpy() / batch_size

    toc = time.time()
    for x, m, y in test_loader:
        m, y = m.type(args.dtype), y.type(args.dtype)
        HTy = HT(y).type(args.dtype)

        m_seq, x_seq = net(HTy, H, HT, bloch)
        m_hat = m_seq[-1]

        rmse_m.append(rmse_torch(m_hat, m))

    elapsed = time.time() - toc
    print('time: {}'.format(elapsed / 16))
    print('m error mean:{}, max: {}, std:{}'.format(np.mean(rmse_m),
                                                    np.max(rmse_m),
                                                    np.std(rmse_m)))
Example #8
0
            help='Number of classes in meta training testing set (N in "N-way", default: 1).')

    parser.add_argument('--alg', type=str, default='iMAML')

    parser.add_argument('--num_test_task', type=int, default=2,
        help='Number of test tasks ( default: 1).')

    parser.add_argument('--num_task', type=int, default=20,
        help='Number of  tasks ( default: 10).')


    # algorithm settings

    parser.add_argument('--n_inner', type=int, default=150)
    parser.add_argument('--inner_lr', type=float, default=1e-5)
    parser.add_argument('--inner_opt', type=str, default='SGD')
    parser.add_argument('--outer_lr', type=float, default=1e-5)
    parser.add_argument('--outer_opt', type=str, default='Adam')
    parser.add_argument('--lr_sched', type=lambda x: (str(x).lower() == 'true'), default=False)

    args = parser.parse_args()

    return args

if __name__ == '__main__':
    args = parse_args()
    set_seed(args.seed)
    set_gpu(args.device)
    check_dir(args)
    main(args)
Example #9
0
def train_proxnet(args):
    check_paths(args)
    # init GPU configuration
    args.dtype = set_gpu(args.cuda)

    # init seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # define training data
    train_dataset = data.MRFData(mod='train', sampling=args.sampling)
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True)

    # init operators (subsampling + subspace dimension reduction + Fourier transformation)
    operator = OperatorBatch(sampling=args.sampling.upper()).cuda()
    H, HT = operator.forward, operator.adjoint
    bloch = BLOCH().cuda()

    # init PGD-Net (proxnet)
    proxnet = ProxNet(args).cuda()

    # init optimizer
    optimizer = torch.optim.Adam([{
        'params': proxnet.transformnet.parameters(),
        'lr': args.lr,
        'weight_decay': args.weight_decay
    }, {
        'params': proxnet.alpha,
        'lr': args.lr2
    }])

    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
                                                     milestones=[20],
                                                     gamma=0.1)

    # init loss
    mse_loss = torch.nn.MSELoss()  #.cuda()

    # init meters
    log = LOG(args.save_model_dir,
              filename=args.filename,
              field_name=[
                  'iter', 'loss_m', 'loss_x', 'loss_y', 'loss_total', 'alpha'
              ])

    loss_epoch = 0
    loss_m_epoch, loss_x_epoch, loss_y_epoch = 0, 0, 0

    # start PGD-Net training
    print('start training...')
    for e in range(args.epochs):
        proxnet.train()
        loss_m_seq = []
        loss_x_seq = []
        loss_y_seq = []
        loss_total_seq = []

        for x, m, y in train_loader:
            # covert data type (cuda)
            x, m, y = x.type(args.dtype), m.type(args.dtype), y.type(
                args.dtype)
            # add noise
            noise = args.noise_sigam * torch.randn(y.shape).type(args.dtype)
            HTy = HT(y + noise).type(args.dtype)

            # PGD-Net computation (iteration)
            # output the reconstructions (sequence) of MRF image x and its tissue property map m
            m_seq, x_seq = proxnet(HTy, H, HT, bloch)

            loss_x, loss_y, loss_m = 0, 0, 0
            for t in range(args.time_step):
                loss_y += mse_loss(H(x_seq[t]), y) / args.time_step
            for i in range(3):
                loss_m += args.loss_weight['m'][i] * mse_loss(
                    m_seq[-1][:, i, :, :], m[:, i, :, :])
            loss_x = mse_loss(x_seq[-1], x)

            # compute loss
            loss_total = loss_m + args.loss_weight[
                'x'] * loss_x + args.loss_weight['y'] * loss_y

            # update gradient
            optimizer.zero_grad()
            loss_total.backward()
            optimizer.step()

            # update meters
            loss_m_seq.append(loss_m.item())
            loss_x_seq.append(loss_x.item())
            loss_y_seq.append(loss_y.item())
            loss_total_seq.append(loss_total.item())

        # (scheduled) update learning rate
        scheduler.step()

        # print meters
        loss_m_epoch = np.mean(loss_m_seq)
        loss_x_epoch = np.mean(loss_x_seq)
        loss_y_epoch = np.mean(loss_y_seq)
        loss_epoch = np.mean(loss_total_seq)

        log.record(e + 1, loss_m_epoch, loss_x_epoch, loss_y_epoch, loss_epoch,
                   proxnet.alpha.detach().cpu().numpy())
        logT(
            "==>Epoch {}\tloss_m: {:.6f}\tloss_x: {:.6f}\tloss_y: {:.6f}\tloss_total: {:.6f}\talpha: {}"
            .format(e + 1, loss_m_epoch, loss_x_epoch, loss_y_epoch,
                    loss_epoch,
                    proxnet.alpha.detach().cpu().numpy()))

        # save checkpoint
        if args.checkpoint_model_dir is not None and (
                e + 1) % args.checkpoint_interval == 0:
            proxnet.eval()
            ckpt = {
                'epoch': e + 1,
                'loss_m': loss_m_epoch,
                'loss_x': loss_x_epoch,
                'loss_y': loss_y_epoch,
                'total_loss': loss_epoch,
                'net_state_dict': proxnet.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'alpha': proxnet.alpha.detach().cpu().numpy()
            }
            torch.save(
                ckpt,
                os.path.join(args.checkpoint_model_dir,
                             'ckp_epoch_{}.pt'.format(e)))
            proxnet.train()

    # save model
    proxnet.eval()
    state = {
        'epoch': args.epochs,
        'loss_m': loss_m_epoch,
        'loss_x': loss_x_epoch,
        'loss_y': loss_y_epoch,
        'total_loss': loss_epoch,
        'alpha': proxnet.alpha.detach().cpu().numpy(),
        'net_state_dict': proxnet.state_dict(),
        'optimizer_state_dict': optimizer.state_dict()
    }
    save_model_path = os.path.join(args.save_model_dir, log.filename + '.pt')
    torch.save(state, save_model_path)
    print("\nDone, trained model saved at", save_model_path)
Example #10
0
import time
from networks import SRCNN
from utils import Tools, set_gpu
from configs import Config
import tensorflow as tf
import os
from tqdm import tqdm

set_gpu(0)


def log10(x):
    numerator = tf.log(x)
    denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
    return numerator / denominator


def train(cfg, data_loder, test_data):
    TRAIN_INPUTS = tf.placeholder('float32', [None, 33, 33, 1])
    TRAIN_LABELS = tf.placeholder('float32', [None, 21, 21, 1])

    VAL_INPUTS = tf.placeholder('float32', [None, None, None, 1])
    VAL_LABELS = tf.placeholder('float32', [None, None, None, 1])

    model = SRCNN()
    train_inference = model(TRAIN_INPUTS, padding='VALID', name='log')
    val_inference = model(VAL_INPUTS, padding='SAME', name='log')

    # train_loss = tf.losses.mean_squared_error(TRAIN_LABELS / 255.0, train_inference)
    train_loss = tf.reduce_mean(
        tf.reduce_sum(tf.square(TRAIN_LABELS / 255.0 - train_inference),
Example #11
0
def main():
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)

    # Make the a directory corresponding to this run for saving results, checkpoints etc.
    i = 0
    while True:
        run_base_dir = pathlib.Path(f"{args.log_dir}/{args.name}~try={str(i)}")

        if not run_base_dir.exists():
            os.makedirs(run_base_dir)
            args.name = args.name + f"~try={i}"
            break
        i += 1

    (run_base_dir / "settings.txt").write_text(str(args))
    args.run_base_dir = run_base_dir

    print(f"=> Saving data in {run_base_dir}")

    # Get dataloader.
    data_loader = getattr(data, args.set)()

    # Track accuracy on all tasks.
    if args.num_tasks:
        best_acc1 = [0.0 for _ in range(args.num_tasks)]
        curr_acc1 = [0.0 for _ in range(args.num_tasks)]
        adapt_acc1 = [0.0 for _ in range(args.num_tasks)]

    # Get the model.
    model = utils.get_model()

    # If necessary, set the sparsity of the model of the model using the ER sparsity budget (see paper).
    if args.er_sparsity:
        for n, m in model.named_modules():
            if hasattr(m, "sparsity"):
                m.sparsity = min(
                    0.5,
                    args.sparsity * (m.weight.size(0) + m.weight.size(1)) /
                    (m.weight.size(0) * m.weight.size(1) * m.weight.size(2) *
                     m.weight.size(3)),
                )
                print(f"Set sparsity of {n} to {m.sparsity}")

    # Put the model on the GPU,
    model = utils.set_gpu(model)

    # Optionally resume from a checkpoint.
    if args.resume:
        if os.path.isfile(args.resume):
            print(f"=> Loading checkpoint '{args.resume}'")
            checkpoint = torch.load(args.resume,
                                    map_location=f"cuda:{args.multigpu[0]}")
            best_acc1 = checkpoint["best_acc1"]
            pretrained_dict = checkpoint["state_dict"]
            model_dict = model.state_dict()
            pretrained_dict = {
                k: v
                for k, v in pretrained_dict.items() if k in model_dict
            }
            model_dict.update(pretrained_dict)
            model.load_state_dict(pretrained_dict)

            print(
                f"=> Loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})"
            )
        else:
            print(f"=> No checkpoint found at '{args.resume}'")

    criterion = nn.CrossEntropyLoss().to(args.device)

    writer = SummaryWriter(log_dir=run_base_dir)

    # Track the number of tasks learned.
    num_tasks_learned = 0

    trainer = getattr(trainers, args.trainer or "default")
    print(f"=> Using trainer {trainer}")

    train, test = trainer.train, trainer.test

    # Initialize model specific context (editorial note: avoids polluting main file)
    if hasattr(trainer, "init"):
        trainer.init(args)

    # TODO: Put this in another file
    if args.task_eval is not None:
        assert 0 <= args.task_eval < args.num_tasks, "Not a valid task idx"
        print(f"Task {args.set}: {args.task_eval}")

        model.apply(lambda m: setattr(m, "task", args.task_eval))

        assert hasattr(
            data_loader, "update_task"
        ), "[ERROR] Need to implement update task method for use with multitask experiments"

        data_loader.update_task(args.task_eval)

        optimizer = get_optimizer(args, model)
        lr_scheduler = schedulers.get_policy(args.lr_policy
                                             or "cosine_lr")(optimizer, args)

        # Train and do inference and normal for args.epochs epcohs.
        best_acc1 = 0.0

        for epoch in range(0, args.epochs):
            lr_scheduler(epoch, None)

            train(
                model,
                writer,
                data_loader.train_loader,
                optimizer,
                criterion,
                epoch,
                task_idx=args.task_eval,
                data_loader=None,
            )

            curr_acc1 = test(
                model,
                writer,
                criterion,
                data_loader.val_loader,
                epoch,
                task_idx=args.task_eval,
            )

            if curr_acc1 > best_acc1:
                best_acc1 = curr_acc1

        utils.write_result_to_csv(
            name=f"{args.name}~set={args.set}~task={args.task_eval}",
            curr_acc1=curr_acc1,
            best_acc1=best_acc1,
            save_dir=run_base_dir,
        )

        if args.save:
            torch.save(
                {
                    "epoch": args.epochs,
                    "arch": args.model,
                    "state_dict": model.state_dict(),
                    "best_acc1": best_acc1,
                    "curr_acc1": curr_acc1,
                    "args": args,
                },
                run_base_dir / "final.pt",
            )

        return best_acc1

    # Iterate through all tasks.
    for idx in range(args.num_tasks or 0):
        print(f"Task {args.set}: {idx}")

        # Tell the model which task it is trying to solve -- in Scenario NNs this is ignored.
        model.apply(lambda m: setattr(m, "task", idx))

        # Update the data loader so that it returns the data for the correct task, also done by passing the task index.
        assert hasattr(
            data_loader, "update_task"
        ), "[ERROR] Need to implement update task method for use with multitask experiments"

        data_loader.update_task(idx)

        # Clear the grad on all the parameters.
        for p in model.parameters():
            p.grad = None

        # Make a list of the parameters relavent to this task.
        params = []
        for n, p in model.named_parameters():
            if not p.requires_grad:
                continue
            split = n.split(".")
            if split[-2] in ["scores", "s", "t"
                             ] and (int(split[-1]) == idx or
                                    (args.trainer and "nns" in args.trainer)):
                params.append(p)
            # train all weights if train_weight_tasks is -1, or num_tasks_learned < train_weight_tasks
            if (args.train_weight_tasks < 0
                    or num_tasks_learned < args.train_weight_tasks):
                if split[-1] == "weight" or split[-1] == "bias":
                    params.append(p)

        # train_weight_tasks specifies the number of tasks that the weights are trained for.
        # e.g. in SupSup, train_weight_tasks = 0. in BatchE, train_weight_tasks = 1.
        # If training weights, use train_weight_lr. Else use lr.
        lr = (args.train_weight_lr if args.train_weight_tasks < 0
              or num_tasks_learned < args.train_weight_tasks else args.lr)

        # get optimizer, scheduler
        if args.optimizer == "adam":
            optimizer = optim.Adam(params, lr=lr, weight_decay=args.wd)
        elif args.optimizer == "rmsprop":
            optimizer = optim.RMSprop(params, lr=lr)
        else:
            optimizer = optim.SGD(params,
                                  lr=lr,
                                  momentum=args.momentum,
                                  weight_decay=args.wd)

        train_epochs = args.epochs

        if args.no_scheduler:
            scheduler = None
        else:
            scheduler = CosineAnnealingLR(optimizer, T_max=train_epochs)

        # Train on the current task.
        for epoch in range(1, train_epochs + 1):
            train(
                model,
                writer,
                data_loader.train_loader,
                optimizer,
                criterion,
                epoch,
                idx,
                data_loader,
            )

            # Required for our PSP implementation, not used otherwise.
            utils.cache_weights(model, num_tasks_learned + 1)

            curr_acc1[idx] = test(model, writer, criterion,
                                  data_loader.val_loader, epoch, idx)
            if curr_acc1[idx] > best_acc1[idx]:
                best_acc1[idx] = curr_acc1[idx]
            if scheduler:
                scheduler.step()

            if (args.iter_lim > 0
                    and len(data_loader.train_loader) * epoch > args.iter_lim):
                break

        utils.write_result_to_csv(
            name=f"{args.name}~set={args.set}~task={idx}",
            curr_acc1=curr_acc1[idx],
            best_acc1=best_acc1[idx],
            save_dir=run_base_dir,
        )

        # Save memory by deleting the optimizer and scheduler.
        del optimizer, scheduler, params

        # Increment the number of tasks learned.
        num_tasks_learned += 1

        # If operating in NNS scenario, get the number of tasks learned count from the model.
        if args.trainer and "nns" in args.trainer:
            model.apply(lambda m: setattr(
                m, "num_tasks_learned",
                min(model.num_tasks_learned, args.num_tasks)))
        else:
            model.apply(
                lambda m: setattr(m, "num_tasks_learned", num_tasks_learned))

        # TODO series of asserts with required arguments (eg num_tasks)
        # args.eval_ckpts contains values of num_tasks_learned for which testing on all tasks so far is performed.
        # this is done by default when all tasks have been learned, but you can do something like
        # args.eval_ckpts = [5,10] to also do this when 5 tasks are learned, and again when 10 tasks are learned.
        if num_tasks_learned in args.eval_ckpts or num_tasks_learned == args.num_tasks:
            avg_acc = 0.0
            avg_correct = 0.0

            # Settting task to -1 tells the model to infer task identity instead of being given the task.
            model.apply(lambda m: setattr(m, "task", -1))

            # an "adaptor" is used to infer task identity.
            # args.adaptor == gt implies we are in scenario GG.

            # This will cache all of the information the model needs for inferring task identity.
            if args.adaptor != "gt":
                utils.cache_masks(model)

            # Iterate through all tasks.
            adapt = getattr(adaptors, args.adaptor)

            for i in range(num_tasks_learned):
                print(f"Testing {i}: {args.set} ({i})")
                # model.apply(lambda m: setattr(m, "task", i))

                # Update the data loader so it is returning data for the right task.
                data_loader.update_task(i)

                # Clear the stored information -- memory leak happens if not.
                for p in model.parameters():
                    p.grad = None

                for b in model.buffers():
                    b.grad = None

                torch.cuda.empty_cache()

                adapt_acc = adapt(
                    model,
                    writer,
                    data_loader.val_loader,
                    num_tasks_learned,
                    i,
                )

                adapt_acc1[i] = adapt_acc
                avg_acc += adapt_acc

                torch.cuda.empty_cache()
                utils.write_adapt_results(
                    name=args.name,
                    task=f"{args.set}_{i}",
                    num_tasks_learned=num_tasks_learned,
                    curr_acc1=curr_acc1[i],
                    adapt_acc1=adapt_acc,
                    task_number=i,
                )

            writer.add_scalar("adapt/avg_acc", avg_acc / num_tasks_learned,
                              num_tasks_learned)

            utils.clear_masks(model)
            torch.cuda.empty_cache()

    if args.save:
        torch.save(
            {
                "epoch": args.epochs,
                "arch": args.model,
                "state_dict": model.state_dict(),
                "best_acc1": best_acc1,
                "curr_acc1": curr_acc1,
                "args": args,
            },
            run_base_dir / "final.pt",
        )

    return adapt_acc1
Example #12
0
import sys
from utils import set_gpu
from utils import set_gpu
import sys

set_gpu(sys.argv)
from keras.models import Model
from keras.layers import Dense, Input
from hyperopt import hp, fmin, tpe, hp, STATUS_OK, Trials, space_eval
from keras.losses import mean_squared_error
import tensorflow as tf
from keras import backend as K
import os
import utils
import inspect
import numpy as np

script_name = os.path.basename(__file__).split('.')[0]

x_train, x_val, x_test = utils.generate_data_medium_2()

space = {
    'units1': hp.quniform(
        'units1', 0, 100, 4
    ),  #implementation of hq.uniform is weird see github.com/hyperopt/hyperopt/issues/321
    'units2': hp.quniform(
        'units2', 0, 100, 4
    ),  #implementation of hq.uniform is weird see github.com/hyperopt/hyperopt/issues/321
    'batch_size': hp.choice('batch_size', [128])
}
Example #13
0
def main(opt: argparse.Namespace) -> None:
    utils.set_gpu(opt.gpu)
    device = torch.device("cuda")
    run_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    run_path = os.path.join(opt.output_root, run_name)
    print(f"Start training {run_path}")
    print(vars(opt))

    # Save config
    os.makedirs(run_path, exist_ok=True)
    with open(os.path.join(run_path, "config.json"), "w") as f:
        json.dump(vars(opt), f, indent=4)

    # Data
    train_dataset: Dataset = data.Scan2Cad(
        opt.scan2cad_file,
        opt.scannet_path,
        opt.shapenet_path,
        "train", ["train"],
        rotation=opt.rotation_augmentation,
        flip=opt.flip_augmentation,
        jitter=opt.jitter_augmentation,
        transformation=data.to_occupancy_grid,
        scan_rep="sdf",
        load_mask=True,
        add_negatives=True)
    train_dataloader: DataLoader = DataLoader(train_dataset,
                                              shuffle=True,
                                              batch_size=opt.batch_size,
                                              num_workers=opt.num_workers,
                                              pin_memory=True)

    val_dataset: Dataset = data.Scan2Cad(opt.scan2cad_file,
                                         opt.scannet_path,
                                         opt.shapenet_path,
                                         "validation", ["validation"],
                                         rotation=opt.rotation_augmentation,
                                         flip=opt.flip_augmentation,
                                         jitter=opt.jitter_augmentation,
                                         transformation=data.to_occupancy_grid,
                                         scan_rep="sdf",
                                         load_mask=True,
                                         add_negatives=True)
    val_dataloader: DataLoader = DataLoader(val_dataset,
                                            shuffle=False,
                                            batch_size=opt.batch_size,
                                            num_workers=opt.num_workers,
                                            pin_memory=True)

    # Models
    separation_model: nn.Module = SeparationNet(
        ResNetEncoder(1, [16, 32, 64, 128, 512]), ResNetDecoder(1),
        ResNetDecoder(1))
    completion_model: nn.Module = HourGlass(ResNetEncoder(1), ResNetDecoder(1))

    triplet_model: nn.Module = TripletNet(ResNetEncoder(1))

    separation_model = separation_model.to(device)
    completion_model = completion_model.to(device)
    triplet_model = triplet_model.to(device)

    model_parameters = list(separation_model.parameters()) + \
                       list(completion_model.parameters()) + \
                       list(triplet_model.parameters())

    optimizer = optim.Adam(model_parameters,
                           lr=opt.learning_rate,
                           weight_decay=opt.weight_decay)

    criterion_separation = nn.BCEWithLogitsLoss(reduction="none")
    criterion_completion = nn.BCEWithLogitsLoss(reduction="none")
    criterion_triplet = nn.TripletMarginLoss(reduction="none",
                                             margin=opt.triplet_margin)

    # Main loop
    iteration_number = 0

    for epoch in range(opt.num_epochs):
        train_dataloader.dataset.regenerate_negatives()

        for _, (scan, cad, negative) in enumerate(train_dataloader):
            utils.stepwise_learning_rate_decay(optimizer, opt.learning_rate,
                                               iteration_number,
                                               [40000, 80000, 120000])

            separation_model.train()
            completion_model.train()
            triplet_model.train()

            losses = forward(scan, cad, negative, separation_model,
                             completion_model, triplet_model,
                             criterion_separation, criterion_completion,
                             criterion_triplet, device)

            loss_foreground, loss_background, loss_completion, loss_triplet = losses
            loss_total = loss_foreground + loss_background + loss_completion + loss_triplet

            # Train step
            optimizer.zero_grad()
            loss_total.backward()
            optimizer.step()

            # Log to console
            if iteration_number % opt.log_frequency == opt.log_frequency - 1:
                print(
                    f"[E{epoch:04d}, I{iteration_number:05d}]\tTotal: {loss_total: 05.3f}",
                    f"\tFG: {loss_foreground: 05.3f}\tBG: {loss_background: 05.3f}",
                    f"\tCompletion: {loss_completion: 05.3f} \tTriplet: {loss_triplet: 05.3f}"
                )

            # Validate
            if iteration_number % opt.validate_frequency == opt.validate_frequency - 1:
                with torch.no_grad():
                    separation_model.eval()
                    completion_model.eval()
                    triplet_model.eval()

                    val_losses = defaultdict(list)

                    # Go through entire validation set
                    for _, (scan_v, cad_v,
                            negative_v) in tqdm(enumerate(val_dataloader),
                                                total=len(val_dataloader),
                                                leave=False):
                        losses = forward(scan_v, cad_v, negative_v,
                                         separation_model, completion_model,
                                         triplet_model, criterion_separation,
                                         criterion_completion,
                                         criterion_triplet, device)

                        loss_foreground, loss_background, loss_completion, loss_triplet = losses
                        loss_total = loss_foreground + loss_background + loss_completion + loss_triplet
                        val_losses["FG"].append(loss_foreground.item())
                        val_losses["BG"].append(loss_background.item())
                        val_losses["Completion"].append(loss_completion.item())
                        val_losses["Triplet"].append(loss_triplet.item())
                        val_losses["Total"].append(loss_total.item())

                    # Aggregate losses
                    val_losses_summary = {
                        k: torch.mean(torch.tensor(v))
                        for k, v in val_losses.items()
                    }
                    print(
                        f"-Val [E{epoch:04d}, I{iteration_number:05d}]\tTotal: {val_losses_summary['Total']:05.3f}",
                        f"\tFG: {val_losses_summary['FG']:05.3f} \tBG: {val_losses_summary['BG']:05.3f}",
                        f"\tCompletion: {val_losses_summary['Completion']:05.3f}",
                        f"\tTriplet: {val_losses_summary['Triplet']:05.3f}")

            # Save checkpoint
            if iteration_number % opt.checkpoint_frequency == opt.checkpoint_frequency - 1:
                checkpoint_name = f"{run_name}_{iteration_number:05d}"

                torch.save(
                    separation_model.state_dict(),
                    os.path.join(run_path, f"{checkpoint_name}_separation.pt"))
                torch.save(
                    completion_model.state_dict(),
                    os.path.join(run_path, f"{checkpoint_name}_completion.pt"))
                torch.save(
                    triplet_model.state_dict(),
                    os.path.join(run_path, f"{checkpoint_name}_triplet.pt"))
                print(f"Saved model at {run_path}/{checkpoint_name}")

            iteration_number += 1
Example #14
0
    )

    dloader_test = data_loader(
        dataset=dataset_test,
        nKnovel=opt.test_way,
        nKbase=0,
        nExemplars=opt.val_shot,  # num training examples per novel category
        nTestNovel=opt.val_query *
        opt.test_way,  # num test examples for all the novel categories
        nTestBase=0,  # num test examples for all the base categories
        batch_size=1,
        num_workers=0,
        epoch_size=1 * opt.val_episode,  # num of batches per epoch
    )

    set_gpu(str(opt.gpu_ids)[1:-1])
    seed = opt.seed
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    check_dir('./experiments/')
    opt.save_path = os.path.join('experiments', opt.save_path)
    check_dir(opt.save_path)

    log_file_path = os.path.join(opt.save_path, "train_log.txt")
    log(log_file_path, str(vars(opt)))

    (embedding_net, cls_head) = get_model(opt)
Example #15
0
            pred = torch.argmax(logits, dim=1)
            acc = utils.compute_acc(pred, labels)
            aves_va.update(acc, 1)
            va_lst.append(acc)

        print('test epoch {}: acc={:.2f} +- {:.2f} (%)'.format(
            epoch,
            aves_va.item() * 100,
            utils.mean_confidence_interval(va_lst) * 100))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', help='configuration file')
    parser.add_argument('--gpu',
                        help='gpu device number',
                        type=str,
                        default='0')
    parser.add_argument('--efficient',
                        help='if True, enables gradient checkpointing',
                        action='store_true')
    args = parser.parse_args()
    config = yaml.load(open(args.config, 'r'), Loader=yaml.FullLoader)

    if len(args.gpu.split(',')) > 1:
        config['_parallel'] = True
        config['_gpu'] = args.gpu

    utils.set_gpu(args.gpu)
    main(config)
Example #16
0
import logging

import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras import optimizers

from models.losses import contrastive_loss
from models.metrics import accuracy_for_distance as accuracy
from models.siamese import create_siamese_network
from models.vggface import create_vggface_network
from models.facenet import create_facenet_network
from data import load, generate
from utils import set_gpu

set_gpu()

logging.basicConfig(
    format="%(asctime)s:%(levelname)s - %(message)s", level=logging.INFO
)
# pylint: disable=invalid-name

# Model parameters
input_shape = 48  # also defines image dimensions
model_name = "siamese"
# TODO: hyperparameters

# Training parameters
epochs = 10
batch_size = 32
Example #17
0
}
'''
Construct the TF graph for training
'''
if args.mode.lower() == 'train':
    input_node, z, x, r, o, w, w_in, m, som_m, w_out, b_out, taus\
            = construct_tf(net, settings, training_params)
    print('Constructed the TF graph...')

    # Loss function and optimizer
    loss, training_op = loss_op(o, z, training_params)
'''
Start the TF session and train the network
'''
sess = tf.Session(config=tf.ConfigProto(
    gpu_options=set_gpu(args.gpu, args.gpu_frac)))
init = tf.global_variables_initializer()

if args.mode.lower() == 'train':
    with tf.Session() as sess:
        print('Training started...')
        init.run()
        training_success = False

        if args.task.lower() == 'go-nogo':
            # Go-NoGo task
            u, label = generate_input_stim_go_nogo(settings)
            target = generate_target_continuous_go_nogo(settings, label)
            x0, r0, w0, w_in0, taus_gaus0 = \
                    sess.run([x, r, w, w_in, taus], feed_dict={input_node: u, z: target})
Example #18
0
from tqdm import tqdm
import tensorflow as tf
from datetime import datetime

from preprocessing import preprocessing_factory
slim = tf.contrib.slim
import argparse

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--lr', type=float, help='init learning rate')
parser.add_argument('--model', type=str, help='choice of model')

args = parser.parse_args()

# In[3]:
utils.set_gpu(1)

# tunable
init_learning_rate = args.lr
learning_rate_decay_factor = 0.5
num_epochs_per_decay = 5
weight_decay = 0.00004
train_iters = 100000

# fixed
batch_size = 512
num_classes = 340
image_size = 128
num_samples_per_epoch = num_classes * 10000

# In[4]:
Example #19
0
def main():
    # Seed.
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)
        np.random.seed(args.seed)

    # If saving models or saving data, create a folder for storing these files.
    # args.save => saving models, tensorboard logs, etc.
    # args.save_data => just saving results.
    if args.save or args.save_data:
        i = 0
        while True:
            run_base_dir = pathlib.Path(
                f"{args.log_dir}/{args.name}+try={str(i)}"
            )

            if not run_base_dir.exists():
                os.makedirs(run_base_dir)
                args.name = args.name + f"+try={i}"
                break
            i += 1

        (run_base_dir / "settings.txt").write_text(str(args))
        args.run_base_dir = run_base_dir

        print(f"=> Saving data in {run_base_dir}")

    # Get dataloader.
    data_loader = getattr(data, args.set)()

    curr_acc1 = 0.0

    # Make a list of models, instead of a single model.
    # This is not for training subspaces, but rather for the ensemble & SWA baselines.
    models = [utils.get_model() for _ in range(args.num_models)]

    # when training the SWA baseline, turn off the gradient to all but the first model.
    if args.trainswa:
        for i in range(1, args.num_models):
            for p in models[i].parameters():
                p.requires_grad = False

    # Resume a model from a saved checkpoint.
    num_models_filled = 0
    num_models = -1
    if args.resume:
        for i, resume in enumerate(args.resume):
            if type(resume) == tuple:
                # can use a tuple to provide how many models to load.
                resume, num_models = resume

            if os.path.isfile(resume):
                print(f"=> Loading checkpoint '{resume}'")
                checkpoint = torch.load(resume, map_location="cpu")

                pretrained_dicts = [
                    {k[7:]: v for k, v in c.items()}
                    for c in checkpoint["state_dicts"]
                ]
                n = 0
                for pretrained_dict in pretrained_dicts:
                    print(num_models_filled)
                    model_dict = models[num_models_filled].state_dict()
                    pretrained_dict = {
                        k: v
                        for k, v in pretrained_dict.items()
                        if k in model_dict
                    }
                    model_dict.update(pretrained_dict)
                    models[num_models_filled].load_state_dict(model_dict)
                    num_models_filled += 1
                    n += 1
                    if num_models > 0 and n >= num_models:
                        break

                print(
                    f"=> Loaded checkpoint '{resume}' (epoch {checkpoint['epoch']})"
                )
            else:
                print(f"=> No checkpoint found at '{resume}'")

    # Put models on the GPU.
    models = [utils.set_gpu(m) for m in models]

    # Get training loss.
    if args.label_smoothing is None:
        criterion = nn.CrossEntropyLoss()
    else:
        print("adding label smoothing!")
        criterion = LabelSmoothing(smoothing=args.label_smoothing)
    criterion = criterion.to(args.device)

    if args.save:
        writer = SummaryWriter(log_dir=run_base_dir)
    else:
        writer = None

    # Get the "trainer", which specified how the model is trained.
    trainer = getattr(trainers, args.trainer or "default")
    print(f"=> Using trainer {trainer}")

    train, test = trainer.train, trainer.test

    # Call "init" on the trainer.
    trainer.init(models, writer, data_loader)

    # Since we have have a list of models, we also use a list of optimizers & schedulers.
    # When training subspaces, this list is of length 1.
    metrics = {}
    optimizers = [utils.get_optimizer(args, m) for m in models]
    lr_schedulers = [
        schedulers.get_policy(args.lr_policy or "cosine_lr")(o, args)
        for o in optimizers
        if o is not None
    ]

    # more logic for resuming a checkpoint, specifically concerned with the "pretrained" argument.
    # if args.pretrained, then we are not resuming. This means that we start from epoch 0.
    # if not args.pretrained, we are resuming and have to set the epoch, etc. appropriately.
    init_epoch = 0
    num_models_filled = 0
    if args.resume and not args.pretrained:
        for i, resume in enumerate(args.resume):
            if os.path.isfile(resume):
                print(f"=> Loading checkpoint '{resume}'")
                checkpoint = torch.load(resume, map_location="cpu")
                init_epoch = checkpoint["epoch"]
                curr_acc1 = checkpoint["curr_acc1"]
                for opt in checkpoint["optimizers"]:
                    if args.late_start >= 0:
                        continue
                    optimizers[num_models_filled].load_state_dict(opt)
                    num_models_filled += 1

    best_acc1 = 0.0
    train_loss = 0.0

    # Save the initialization.
    if init_epoch == 0 and args.save:
        print("saving checkpoint")
        utils.save_cpt(init_epoch, 0, models, optimizers, best_acc1, curr_acc1)

    # If the start epoch == the end epoch, just do evaluation "test".
    if init_epoch == args.epochs:
        curr_acc1, metrics = test(
            models, writer, criterion, data_loader, init_epoch,
        )

        if args.save or args.save_data:
            metrics["epoch"] = init_epoch
            utils.write_result_to_csv(
                name=args.name + f"+curr_epoch={init_epoch}",
                curr_acc1=curr_acc1,
                best_acc1=best_acc1,
                train_loss=train_loss,
                **metrics,
            )

    # Train from init_epoch -> args.epochs.
    for epoch in range(init_epoch, args.epochs):
        for lr_scheduler in lr_schedulers:
            lr_scheduler(epoch, None)
        train_loss = train(
            models, writer, data_loader, optimizers, criterion, epoch,
        )
        if type(train_loss) is tuple:
            train_loss, optimizers = train_loss

        if (
            args.test_freq is None
            or (epoch % args.test_freq == 0)
            or epoch == args.epochs - 1
        ):
            curr_acc1, metrics = test(
                models, writer, criterion, data_loader, epoch,
            )
        if curr_acc1 > best_acc1:
            best_acc1 = curr_acc1

        metrics["epoch"] = epoch + 1

        # This is for the SWA baseline -- we need to lookup if this an epoch for which we are saving a checkpoint.
        # If so we save a checkpoint and move it to the corresponding place in the models list.
        if args.trainswa and (epoch + 1) in args.swa_save_epochs:
            j = args.swa_save_epochs.index(epoch + 1)
            for m1, m2 in zip(models[0].modules(), models[j].modules()):
                if isinstance(m1, nn.Conv2d):
                    m2.weight = nn.Parameter(m1.weight.clone().detach())
                    m2.weight.requires_grad = False
                elif isinstance(m1, nn.BatchNorm2d):
                    m2.weight = nn.Parameter(m1.weight.clone().detach())
                    m2.bias = nn.Parameter(m1.bias.clone().detach())
                    m2.weight.requires_grad = False
                    m2.bias.requires_grad = False

        # Save checkpoint.
        if (
            args.save
            and args.save_epochs is not None
            and (epoch + 1) in args.save_epochs
        ):
            it = (epoch + 1) * len(data_loader.train_loader)
            utils.save_cpt(
                epoch + 1, it, models, optimizers, best_acc1, curr_acc1
            )

    # Save results.
    if args.save or args.save_data:
        utils.write_result_to_csv(
            name=args.name,
            curr_acc1=curr_acc1,
            best_acc1=best_acc1,
            train_loss=train_loss,
            **metrics,
        )

    # Save final checkpiont.
    if args.save:
        it = args.epochs * len(data_loader.train_loader)
        utils.save_cpt(
            args.epochs, it, models, optimizers, best_acc1, curr_acc1
        )

    return curr_acc1, metrics
Example #20
0
def main():
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)

    i = 0
    while True:
        run_base_dir = pathlib.Path(f"{args.log_dir}/{args.name}~try={str(i)}")

        if not run_base_dir.exists():
            os.makedirs(run_base_dir)
            args.name = args.name + "~try={}".format(str(i))
            break
        i += 1

    (run_base_dir / "settings.txt").write_text(str(args))

    # get the datasets.
    count = {}
    for i in range(len(args.set)):
        count[args.set[i]] = 1
        for j in range(i + 1, len(args.set)):
            if args.set[j] == args.set[i]:
                args.set[j] = args.set[j] + '-v{}'.format(count[args.set[i]] +
                                                          1)
                count[args.set[i]] += 1

    sets = {set: getattr(data, set.split('-')[0])() for set in args.set}

    best_acc1 = {set: 0.0 for set in args.set}
    curr_acc1 = {set: 0.0 for set in args.set}

    model = utils.get_model()
    model = utils.set_gpu(model)

    optimizers = {}
    schedulers = {}
    for set in args.set:
        params = []
        for n, p in model.named_parameters():
            if not p.requires_grad:
                continue
            if n.split(".")[-1] in args.set and n.split(".")[-1] != set:
                continue
            params.append(p)

        optimizers[set] = optim.SGD(
            params,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.wd,
        )
        schedulers[set] = CosineAnnealingLR(optimizers[set], T_max=args.epochs)

    criterion = nn.CrossEntropyLoss().to(args.device)

    writer = SummaryWriter(log_dir=run_base_dir)

    # Save the initial state
    torch.save(
        {
            "epoch": 0,
            "model": args.model,
            "state_dict": model.state_dict(),
            "best_acc1": best_acc1,
            "curr_acc1": curr_acc1,
            "args": args,
        },
        run_base_dir / "init.pt",
    )

    if args.hamming:
        utils.write_hamming(writer, model, 0)

    for epoch in range(1, args.epochs + 1):
        for task, loader in sets.items():
            model.apply(lambda m: setattr(m, "task", task))
            train(model, writer, loader.train_loader, optimizers[task],
                  criterion, epoch, task)
            curr_acc1[task] = test(model, writer, criterion, loader.val_loader,
                                   epoch, task)
            if curr_acc1[task] > best_acc1[task]:
                best_acc1[task] = curr_acc1[task]
            schedulers[task].step()

        if epoch == args.epochs or (args.save_every > 0 and
                                    (epoch % args.save_every) == 0):
            torch.save(
                {
                    "epoch": epoch,
                    "arch": args.model,
                    "state_dict": model.state_dict(),
                    "best_acc1": best_acc1,
                    "curr_acc1": curr_acc1,
                    "args": args,
                },
                run_base_dir / "epoch_{}.pt".format(epoch),
            )

        if args.hamming:
            utils.write_hamming(writer, model, epoch)

    for set in args.set:
        utils.write_result_to_csv(
            name=args.name + "~task={}".format(set),
            curr_acc1=curr_acc1[task],
            best_acc1=best_acc1[task],
        )

    if args.hamming:
        utils.log_hamming(model)
Example #21
0
# Description : Usage example of LoopModel
# Author      : Antoni Burguera (antoni dot burguera at uib dot com)
# History     : 4-April-2021 - Creation
# Citation    : Please, refer to the README file to know how to properly cite
#               us if you use this software.
###############################################################################

###############################################################################
# SET GPU
###############################################################################

# These must be the first lines to execute. Restart the kernel before.
# If you don't have GPU/CUDA or this does not work, just set it to False or
# (preferrably) remove these two lines.
from utils import set_gpu
set_gpu(True)

###############################################################################
# IMPORTS
###############################################################################

import numpy as np
from automodel import AutoModel
from loopreader import LoopReader
from loopmodel import LoopModel
from loopgenerator import LoopGenerator
from utils import build_reader_basename,montage

###############################################################################
# PARAMETERS
###############################################################################
Example #22
0
def main():
    print(args.seed_model)
    if os.path.isfile(args.seed_model):
        print(f"=> Loading seed model from '{args.seed_model}'")
        checkpoint = torch.load(
            args.seed_model,
            map_location=f"cuda:{args.multigpu[0]}"
            if torch.cuda.is_available() else torch.device('cpu'))
        best_acc1 = checkpoint["best_acc1"]
        pretrained_dict = checkpoint["state_dict"]
        seed_args = checkpoint['args']
        num_tasks_learned = checkpoint['args'].num_tasks
        args.num_seed_tasks_learned = num_tasks_learned
    else:
        raise Exception(f"=> No seed model found at '{args.seed_model}'!")

    assert not (
        (args.num_tasks - args.num_seed_tasks_learned > 1) and
        (args.conv_type == 'BasisMaskConv')
    ), 'BasisMaskConv only supports learning one extra task over the mask tasks. Please fix config or change conv_type!'

    if seed_args.seed is not None:
        args.seed = seed_args.seed
        random.seed(int(seed_args.seed))
        np.random.seed(int(seed_args.seed))  # Numpy module.
        torch.manual_seed(int(seed_args.seed))
        torch.cuda.manual_seed(int(seed_args.seed))
        torch.cuda.manual_seed_all(int(
            seed_args.seed))  # if you are using multi-GPU.
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True

    # Make the a directory corresponding to this run for saving results, checkpoints etc.
    i = 0
    while True:
        # AT comments
        # getting PermissionError: [Errno 13] Permission denied: '/path'
        # run_base_dir = "./at_results"
        run_base_dir = pathlib.Path(f"{args.log_dir}/{args.name}~try={str(i)}")

        if not run_base_dir.exists():
            os.makedirs(run_base_dir)
            args.name = args.name + f"~try={i}"
            break
        i += 1

    (run_base_dir / "settings.txt").write_text(str(args))
    (run_base_dir / "seed_settings.txt").write_text(str(seed_args))
    args.run_base_dir = run_base_dir

    print(f"=> Saving data in {run_base_dir}")

    # Get model with correct architecture and load in state dict.
    model = utils.get_model()
    model = utils.set_gpu(model)

    print(
        f"=> Loaded seed model parameters from '{args.seed_model}' (num tasks: {checkpoint['args'].num_tasks}) (epochs: {checkpoint['epoch']})"
    )
    if seed_args.er_sparsity:
        for n, m in model.named_modules():
            if hasattr(m, "sparsity"):
                m.sparsity = min(
                    0.5,
                    seed_args.sparsity *
                    (m.weight.size(0) + m.weight.size(1)) /
                    (m.weight.size(0) * m.weight.size(1) * m.weight.size(2) *
                     m.weight.size(3)),
                )
                print(f"Set sparsity of {n} to {m.sparsity}")

    model_dict = model.state_dict()
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in model_dict
    }
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)
    #model.eval()
    # Get dataloader.
    data_loader = getattr(data, args.set)()

    # Track accuracy on all tasks.
    if args.num_tasks:
        best_acc1 = [0.0] * args.num_tasks
        curr_acc1 = [0.0] * args.num_tasks
        adapt_acc1 = [0.0] * args.num_tasks

    criterion = nn.CrossEntropyLoss().to(args.device)

    writer = SummaryWriter(log_dir=run_base_dir)

    trainer = getattr(trainers, args.trainer or "default")
    print(f"=> Using trainer {trainer}")

    train, test = trainer.train, trainer.test

    # Initialize model specific context (editorial note: avoids polluting main file)
    if hasattr(trainer, "init"):
        trainer.init(args)

    if args.task_eval is not None:
        assert 0 <= args.task_eval < args.num_tasks, "Not a valid task idx"
        print(f"Task {args.set}: {args.task_eval}")

        # Settting task to -1 tells the model to infer task identity instead of being given the task.
        model.apply(lambda m: setattr(m, "task", -1))

        # an "adaptor" is used to infer task identity.
        # args.adaptor == gt implies we are in scenario GG.

        # This will cache all of the information the model needs for inferring task identity.
        if args.adaptor != "gt":
            utils.cache_masks(model)

        # Iterate through all tasks.
        adapt = getattr(adaptors, args.adaptor)

        # Update the data loader so it is returning data for the right task.
        data_loader.update_task(args.task_eval)

        # Clear the stored information -- memory leak happens if not.
        for p in model.parameters():
            p.grad = None

        for b in model.buffers():
            b.grad = None

        torch.cuda.empty_cache()

        adapt_acc = adapt(
            model,
            writer,
            data_loader.val_loader,
            num_tasks_learned,
            args.task_eval,
        )

        torch.cuda.empty_cache()
        utils.write_adapt_results(
            name=args.name,
            task=f"{args.set}_{args.task_eval}",
            num_tasks_learned=num_tasks_learned,
            curr_acc1=0.0,
            adapt_acc1=adapt_acc,
            task_number=args.task_eval,
        )

        utils.clear_masks(model)
        torch.cuda.empty_cache()
        return

    # Iterate through all new tasks that were not used for training masks.
    for idx in range(
            args.num_seed_tasks_learned if not args.train_mask_alphas else 0,
            args.num_tasks):
        print(f"Task {args.set}: {idx}")

        # Tell the model which task it is trying to solve -- in Scenario NNs this is ignored.
        model.apply(lambda m: setattr(m, "task", idx))

        # Update the data loader so that it returns the data for the correct task, also done by passing the task index.
        assert hasattr(
            data_loader, "update_task"
        ), "[ERROR] Need to implement update task method for use with multitask experiments"

        data_loader.update_task(idx)

        # Clear the grad on all the parameters.
        for p in model.parameters():
            p.grad = None

        # Make a list of the parameters relavent to this task.
        params = []
        for n, p in model.named_parameters():
            if args.conv_type == 'BasisMultitaskMaskConv':
                if p.requires_grad and int(n.split('.')[-1]) == idx:
                    params.append(p)
            elif p.requires_grad:
                params.append(p)

        # train_weight_tasks specifies the number of tasks that the weights are trained for.
        # e.g. in SupSup, train_weight_tasks = 0. in BatchE, train_weight_tasks = 1.
        # If training weights, use train_weight_lr. Else use lr.
        lr = (args.train_weight_lr if args.train_weight_tasks < 0
              or num_tasks_learned < args.train_weight_tasks else args.lr)

        # get optimizer, scheduler
        if args.optimizer == "adam":
            optimizer = optim.Adam(params, lr=lr, weight_decay=args.wd)
        elif args.optimizer == "rmsprop":
            optimizer = optim.RMSprop(params, lr=lr)
        else:
            optimizer = optim.SGD(params,
                                  lr=lr,
                                  momentum=args.momentum,
                                  weight_decay=args.wd)

        train_epochs = args.epochs

        if args.no_scheduler:
            scheduler = None
        else:
            scheduler = CosineAnnealingLR(optimizer, T_max=train_epochs)

        # Train on the current task.
        for epoch in range(1, train_epochs + 1):
            train(model, writer, data_loader.train_loader, optimizer,
                  criterion, epoch, idx, data_loader, True)

            # Required for our PSP implementation, not used otherwise.
            utils.cache_weights(model, num_tasks_learned + 1)

            curr_acc1[idx] = test(model, writer, criterion,
                                  data_loader.val_loader, epoch, idx)
            if curr_acc1[idx] > best_acc1[idx]:
                best_acc1[idx] = curr_acc1[idx]
            if scheduler:
                scheduler.step()

            if (args.iter_lim > 0
                    and len(data_loader.train_loader) * epoch > args.iter_lim):
                break

        utils.write_result_to_csv(
            name=f"{args.name}~set={args.set}~task={idx}",
            curr_acc1=curr_acc1[idx],
            best_acc1=best_acc1[idx],
            save_dir=run_base_dir,
        )

        # Save memory by deleting the optimizer and scheduler.
        del optimizer, scheduler, params

        # Increment the number of tasks learned.
        num_tasks_learned += 1

        # If operating in NNS scenario, get the number of tasks learned count from the model.
        if args.trainer and "nns" in args.trainer:
            model.apply(lambda m: setattr(
                m, "num_tasks_learned",
                min(model.num_tasks_learned, args.num_tasks)))
        else:
            model.apply(
                lambda m: setattr(m, "num_tasks_learned", num_tasks_learned))

    # Run inference on all the tasks.
    avg_acc = 0.0
    avg_correct = 0.0

    # Settting task to -1 tells the model to infer task identity instead of being given the task.
    model.apply(lambda m: setattr(m, "task", -1))

    # an "adaptor" is used to infer task identity.
    # args.adaptor == gt implies we are in scenario GG.

    # This will cache all of the information the model needs for inferring task identity.
    if args.adaptor != "gt":
        utils.cache_masks(model)

    # Iterate through all tasks.
    adapt = getattr(adaptors, args.adaptor)

    for i in range(args.num_tasks):
        print(f"Testing {i}: {args.set} ({i})")
        # model.apply(lambda m: setattr(m, "task", i))

        # Update the data loader so it is returning data for the right task.
        data_loader.update_task(i)

        # Clear the stored information -- memory leak happens if not.
        for p in model.parameters():
            p.grad = None

        for b in model.buffers():
            b.grad = None

        torch.cuda.empty_cache()

        adapt_acc = adapt(
            model,
            writer,
            data_loader.val_loader,
            num_tasks_learned,
            i,
        )

        adapt_acc1[i] = adapt_acc
        avg_acc += adapt_acc

        torch.cuda.empty_cache()
        utils.write_adapt_results(
            name=args.name,
            task=f"{args.set}_{i}",
            num_tasks_learned=num_tasks_learned,
            curr_acc1=curr_acc1[i],
            adapt_acc1=adapt_acc,
            task_number=i,
        )

    writer.add_scalar("adapt/avg_acc", avg_acc / num_tasks_learned,
                      num_tasks_learned)

    utils.clear_masks(model)
    torch.cuda.empty_cache()

    if args.save:
        torch.save(
            {
                "epoch": args.epochs,
                "arch": args.model,
                "state_dict": model.state_dict(),
                "best_acc1": best_acc1,
                "curr_acc1": curr_acc1,
                "args": args,
            },
            run_base_dir / "basis_final.pt",
        )

    return adapt_acc1
Example #23
0
    )

    dloader_val = data_loader(
        dataset=dataset_val,
        nKnovel=opt.test_way,
        nKbase=0,
        nExemplars=opt.val_shot,  # num training examples per novel category
        nTestNovel=opt.val_query *
        opt.test_way,  # num test examples for all the novel categories
        nTestBase=0,  # num test examples for all the base categories
        batch_size=1,
        num_workers=0,
        epoch_size=1 * opt.val_episode,  # num of batches per epoch
    )

    set_gpu(opt.gpu)
    check_dir('./experiments/')
    check_dir(opt.save_path)

    log_file_path = os.path.join(opt.save_path, "train_log.txt")
    log(log_file_path, str(vars(opt)))

    (embedding_net, cls_head) = get_model(opt)

    optimizer = torch.optim.SGD([{
        'params': embedding_net.parameters()
    }, {
        'params': cls_head.parameters()
    }],
                                lr=0.1,
                                momentum=0.9,
from config.init_param import data_param, occlu_param, fap_param
from config.parse_param import parse_param
from model_structure.align_v1 import FaceAlignment
from model_structure.occlu_detect import OcclusionDetection
from ml import load_config
from data_gen import load_imgs_labels
from utils import get_filenames
from utils import heat_map_compute
from utils import load_basic_info
from utils import logger
from utils import set_gpu

# load config
normalizer, mean_shape = load_config()
set_gpu(ratio=0.5)

# parse parameter
ap = argparse.ArgumentParser()
ap.add_argument('-e1',
                '--epochs1',
                type=int,
                default=75,
                help='epochs1 of face alignment')
ap.add_argument('-bs1',
                '--batch_size1',
                type=int,
                default=32,
                help='batch size of face alignment')
ap.add_argument('-lr1',
                '--init_lr1',
from utils import pprint, set_gpu, count_acc, Averager, euclidean_metric
from extensions import *

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', default='0')
    parser.add_argument('--load', default='./save/proto-1/max-acc.pth')
    parser.add_argument('--batch', type=int, default=2000)
    parser.add_argument('--way', type=int, default=5)
    parser.add_argument('--shot', type=int, default=1)
    parser.add_argument('--query', type=int, default=30)
    parser.add_argument('--folds', type=int, default=2)
    args = parser.parse_args()
    pprint(vars(args))

    set_gpu(args.gpu)

    dataset = MiniImageNet('test')
    sampler = CategoriesSampler(dataset.label,
                                args.batch, args.way, args.folds * args.shot + args.query)
    loader = DataLoader(dataset, batch_sampler=sampler,
                        num_workers=8, pin_memory=True)

    model = Convnet().cuda()
    model.load_state_dict(torch.load(args.load))
    model.eval()

    ave_acc = Averager()
    s_label = torch.arange(args.train_way).repeat(args.shot).view(args.shot * args.train_way)
    s_onehot = torch.zeros(s_label.size(0), 20)
    s_onehot = s_onehot.scatter_(1, s_label.unsqueeze(dim=1), 1).cuda()
Example #26
0
def train(args):
    check_paths(args)
    dtype = set_gpu(args.cuda)

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # the dataset 'BSDS300' can be downloaded from the below link:
    # https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
    train_loader = CVDB_Y('BSDS300',
                          batch_size=3,
                          shuffle=True,
                          crop_size=args.img_shape)

    sr = SR(scale_factor=args.scale_factor).cuda()
    sr.eval()
    H, HT = sr.Forward, sr.Backproj
    Pr = lambda x: HT(H(x))
    Pn = lambda x: x - Pr(x)

    ddn = DDN(in_channels=1,
              out_channels=1,
              operator=sr,
              F='dncnn',
              G='unet',
              connection_type='cascade').type(dtype)

    optimizer = Adam([{
        'params': ddn.G.parameters(),
        'lr': args.lr,
        'weight_decay': args.reg_weight['G']
    }, {
        'params': ddn.F.parameters(),
        'lr': args.lr
    }])
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[args.epochs // 2], gamma=0.1)
    mse_loss = torch.nn.MSELoss().cuda()

    loss_epoch = 0
    print('start training...')
    for e in range(args.epochs):
        ddn.train()
        loss_seq = []
        for data in train_loader:
            x = data[0].type(dtype)
            if len(x.shape) == 5:
                x = x.view(-1, x.shape[-3], x.shape[-2], x.shape[-1])
            # generate y
            y = H(x)
            # init noise
            n = torch.from_numpy(
                (np.random.normal(0, args.noise_sigam, y.shape))).type(
                    dtype)  # Add Gaussian noise without clipping
            # calculate the psudo-inverse backprojected reconstruction HTy
            HTy = HT(y + n).type(dtype)
            # DDN reconstruction
            x_hat, F, f, g = ddn(HTy, Pr, Pn)
            # calculate the loss
            loss = mse_loss(x_hat,
                            x) + args.reg_weight['F'] * mse_loss(H(F), n)
            # update parameters (gradient descent)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            loss_seq.append(loss.item())

        scheduler.step()
        loss_epoch = np.mean(loss_seq)

        print("==>Epoch {}\tloss_total: {:.6f}".format(e + 1, loss_epoch))

        if args.checkpoint_model_dir is not None and (
                e + 1) % args.checkpoint_interval == 0:
            ddn.eval()
            ckpt = {
                'epoch': e + 1,
                'total_loss': loss_epoch,
                'net_state_dict': ddn.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
            }
            torch.save(
                ckpt,
                os.path.join(args.checkpoint_model_dir,
                             'ckp_epoch_{}.pt'.format(e)))
            ddn.train()

    # save model
    ddn.eval()
    ckpt = {
        'epoch': args.epochs,
        'total_loss': loss_epoch,
        'net_state_dict': ddn.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
    }
    save_model_path = os.path.join(args.save_model_dir, args.filename + '.pt')
    torch.save(ckpt, save_model_path)
    print("\nTraining is Done.\tTrained model saved at {}".format(
        save_model_path))