from torch.autograd import Variable, grad import GAN import utils import visdom import numpy as np import sys import os import pickle torch.manual_seed(1) #============ PARSE ARGUMENTS ============= args = utils.setup_args() args.save_name = args.save_file + args.env print(args) #============ GRADIENT PENALTY (for discriminator) ================ def calc_gradient_penalty(netD, real_data, fake_data): alpha = torch.rand(real_data.size(0), 1) alpha = alpha.expand(real_data.size()) if torch.cuda.is_available(): alpha = alpha.cuda() interpolates = alpha * real_data + ((1 - alpha) * fake_data)
} if test_summary['test_acc'] > best_accuracy: best_accuracy = test_summary['test_acc'] current_state['best_acc'] = best_accuracy save_checkpoint(current_state=current_state, filename=os.path.join(args.save_dir, "models/best.pth")) logger.info("Best accuracy: %s" % best_accuracy) if epoch % args.save_freq == 0: save_checkpoint(current_state=current_state, filename=os.path.join( args.save_dir, "models/epoch_%s.pth" % epoch)) save_checkpoint(current_state=current_state, filename=os.path.join(args.save_dir, "models/last.pth")) if args.use_gpu: net.cuda() if __name__ == "__main__": args = setup_args() os.makedirs(os.path.join(args.save_dir, "models"), exist_ok=True) logger = setup_logger(name="training_log", save_dir=args.save_dir) logger.info(args) run_training(args, logger)
you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import utils import json assets = utils.setup_args('Utility script to extract namespaces from MC: PE/W10/EDU JSON files.') namespaces = list() print('\nAnalyzing \'_ui_defs.json\'...\n') ui_defs = json.loads(utils.get_clean_json(assets + '/ui/_ui_defs.json')) for ui_file in ui_defs['ui_defs']: print('Analyzing \'{}\'...'.format(ui_file)) ui_json = json.loads(utils.get_clean_json(assets + '/' + ui_file)) namespaces.append(ui_json['namespace']) print('\nRemoving duplicates...') for ns in namespaces: i = namespaces.count(ns) while i > 1: