Example #1
0
def train():
    history_score = [];  max_score = -1
    for i in range(num_round):
        fetches = [model.optimizer, model.loss]
        if batch_size > 0:
            ls = []
            bar = progressbar.ProgressBar()
            print('[%d]\ttraining...' % i)
            for j in bar(range(int(train_size / batch_size + 1))):
                feat_ids, feat_vals, label = slice_libsvm(train_data, j * batch_size, batch_size)
                #a = model.run_step(fetches, feat_ids, feat_vals, label)
                #for i in range(len(feat_vals)): feat_vals[i][18] /= 1000;feat_vals[i][19] /= 10;feat_vals[i][20] /= 10      # ********************
                _, l = model.run_step(fetches, feat_ids, feat_vals, label)
                ls.append(l)
        elif batch_size == -1:
            feat_ids, feat_vals, label = slice_libsvm(train_data)
            _, l = model.run_step(fetches, feat_ids, feat_vals, label)
            ls = [l]
        train_preds = []
        print('[%d]\tevaluating...' % i)
        bar = progressbar.ProgressBar()
        for j in bar(range(int(train_size / 10000 + 1))):
            feat_ids, feat_vals, label = slice_libsvm(train_data, j * 10000, 10000)
            preds = model.run_step(model.pred_prob, feat_ids, feat_vals, label)
            train_preds.extend(preds)
        test_preds = []
        bar = progressbar.ProgressBar()
        for j in bar(range(int(test_size / 10000 + 1))):
            feat_ids, feat_vals, label = slice_libsvm(test_data, j * 10000, 10000)
            preds = model.run_step(model.pred_prob, feat_ids, feat_vals, label)
            #auc = model.run_step(model.auc, feat_ids, feat_vals, label)
            test_preds.extend(preds)
        train_true = [];    test_true = []
        for e in train_data:
            train_true.append(e[2])
        for e in test_data:
            test_true.append(e[2])
        train_score = roc_auc_score(train_true, train_preds)
        test_score = roc_auc_score(test_true, test_preds)
        trprecision, trrecall, tracc = calScore(train_true, train_preds)
        teprecision, terecall, teacc = calScore(test_true, test_preds)
        print('[%d]\tloss: %f\ttrain-auc: %f\teval-auc: %f\t\tprecision: %f\trecall: %f\ttrain-acc: %f\ttest-acc: %f'
              % (i, np.mean(ls), train_score, test_score, teprecision, terecall, tracc, teacc))
        history_score.append(test_score)
        if test_score > max_score:
            model.save_model(FLAGS.model_dir)
            max_score = test_score
        if i > min_round and i > early_stop_round:
            if np.argmax(history_score) == i - early_stop_round and history_score[-1] - history_score[-1 * early_stop_round] < 1e-5:
                print('early stop\nbest iteration:\n[%d]\teval-auc: %f' % (np.argmax(history_score), np.max(history_score)))
                model.save_model(FLAGS.model_dir)
                break
Example #2
0
def export_features():
    train_data = read_libsvm(FLAGS.data_dir)
    feat_ids, feat_vals, label = slice_libsvm(train_data)
    fea = model.run_step(model.fea_out, feat_ids, feat_vals, label)
    with open(FLAGS.feature_dir, 'w') as f:
        for i in range(len(fea)):
            f.write(str(label[i]) + ' ')  # label
            for j in range(len(fea[i])):  # features
                f.write(str(j + 1) + ':' + str(round(fea[i][j], 3)) + ' ')
            f.write('\n')
    print('export feature done, file : %s' % FLAGS.feature_dir)
    exit()