Example #1
0
    def testEntailmentClassifierEmptyData(self):
        # Arrange
        data, test_data, vectors = testData()
        vectors.nouns = defaultdict(lambda: {})
        neigh = KNeighborsClassifier(n_neighbors=1)
        classifier = EntailmentClassifier(neigh, vectors)

        # Act
        classifier.fit(data)
        classifier.predict(data)
    def testEntailmentClassifierEmptyData(self):
        # Arrange
        data, test_data, vectors = testData()
        vectors.nouns = defaultdict(lambda:{})
        neigh = KNeighborsClassifier(n_neighbors=1)
        classifier = EntailmentClassifier(neigh, vectors)

        # Act
        classifier.fit(data)
        classifier.predict(data)
    def runExperiment(self, classifier_name):
        data, test_data, vectors = testData()
        all_data = (data + test_data)*3
        #print all_data

        maker = ClassifierMaker(vectors)
        classifier = maker.make(classifier_name)

        num_folds = 3
        experiment = EntailmentExperiment(all_data, classifier, num_folds)
        results = [experiment.runFold(fold)
                   for fold in range(num_folds)]
        #print results
        return results
Example #4
0
    def testEntailmentClassifier(self):
        for i in range(3):
            # Arrange
            data, test_data, vectors = testData()
            expected = tuple(x[2] for x in test_data)
            test_data = [x[:2] for x in test_data]

            neigh = KNeighborsClassifier(n_neighbors=1)
            classifier = EntailmentClassifier(neigh, vectors)

            # Act
            classifier.fit(data)
            results = classifier.predict(test_data)

            # Assert
            self.assertEqual(tuple(results), expected)
    def testEntailmentClassifier(self):
        for i in range(3):
            # Arrange
            data, test_data, vectors = testData()
            expected = tuple(x[2] for x in test_data)
            test_data = [x[:2] for x in test_data]

            neigh = KNeighborsClassifier(n_neighbors=1)
            classifier = EntailmentClassifier(neigh, vectors)

            # Act
            classifier.fit(data)
            results = classifier.predict(test_data)
            
            # Assert
            self.assertEqual(tuple(results), expected)
Example #6
0
    def testClassifierMakerClassifiers(self):
        "Check that all classifiers that can be made are valid."
        data, test_data, vectors = testData()
        class_values = set(x[2] for x in data)

        params = {'beta': [1.0, 2.0], 'costs': [1.0], 'k': [1]}

        maker = ClassifierMaker(vectors, params)
        names = maker.get_names()

        for name in names:
            classifier = maker.make(name)
            classifier.fit(data)
            results = classifier.predict(test_data)

            self.assertEqual(len(results), len(test_data))
            self.assertTrue(set(results) <= class_values)
    def testClassifierMakerClassifiers(self):
        "Check that all classifiers that can be made are valid."
        data, test_data, vectors = testData()
        class_values = set(x[2] for x in data)

        params = {'beta':[1.0, 2.0], 'costs':[1.0]}

        maker = ClassifierMaker(vectors, params)
        names = maker.get_names()

        for name in names:
            classifier = maker.make(name)
            classifier.fit(data)
            results = classifier.predict(test_data)
            
            self.assertEqual(len(results), len(test_data))
            self.assertTrue(set(results) <= class_values)
    def runExperiment(self, classifier_name):
        data, test_data, vectors = testData()
        all_data = (data + test_data)*3
        #print all_data

        maker = ClassifierMaker(vectors, params = {'k':[1]} )
        classifier = maker.make(classifier_name)

        num_folds = 3
        experiment = EntailmentExperiment(all_data, classifier, num_folds)
        results = [experiment.runFold(fold)
                   for fold in range(num_folds)]
        #print results
        return results

            
            
Example #9
0
 def testClassifierMakerNames(self):
     data, test_data, vectors = testData()
     maker = ClassifierMaker(vectors)
     names = maker.get_names()
     self.assertGreater(len(names), 0,
                        "Maker should have more than one classifier")
 def testClassifierMakerNames(self):
     data, test_data, vectors = testData()
     maker = ClassifierMaker(vectors)
     names = maker.get_names()
     self.assertGreater(len(names), 0,
                        "Maker should have more than one classifier")