Example #1
0
                else:
                    perceptual_loss = 0
                criterion_loss = model.loss(img, outputs, criterion)
                loss = criterion_weight * criterion_loss + loss_network_weight * perceptual_loss
                loss.backward()
                optimizer.step()
                run_losses.append(outputs.shape[0] * loss.item())
            if scheduler is not None:
                scheduler.step()
            epoch_loss = sum(run_losses) / len(dataset)
            loss_history.append(epoch_loss)
            print('\n epoch [{}/{}], loss:{:.6f} #config={}'.format(
                epoch + 1, num_epochs, epoch_loss, j))

            if epoch % 10 == 0 or epoch == num_epochs - 1:
                img_temp = to_img(outputs)
                img_to_save = np.asarray(img_temp[idx_to_save].permute(
                    1, 2, 0).detach().cpu())
                to_save_path = osp.join(save_run_as,
                                        'epoch{}.jpg'.format(epoch))
                plt.imsave(to_save_path, np.uint8(img_to_save * 255))

                loss_path = osp.join(save_run_as, 'losses.txt')
                if epoch == 0 and osp.exists(loss_path):
                    os.remove(loss_path)

                with open(loss_path, 'a+') as f:
                    f.write('{}\n'.format(loss_history[-1]))
        print('***** Done training {}/{} configurations *****\n'.format(
            j, len(run_configurations)))
Example #2
0
import torch
from net import Discriminator, Generator
from torch.autograd import Variable
from torchvision.utils import save_image
from utils import to_img
z_dimension = 100
batch_size = 64
D = Discriminator()
G = Generator(z_dimension)
D.load_state_dict(torch.load("./model/discriminator.pth"))
G.load_state_dict(torch.load("./model/generator.pth"))
if torch.cuda.is_available():
    D = D.cuda().eval()
    G = G.cuda().eval()
with torch.no_grad():
    z = Variable(torch.randn(batch_size, z_dimension)).cuda()
    fake_img = G(z)
    fake_img = to_img(fake_img.cpu().data)
    save_image(fake_img, "./result/fake_test.png")
Example #3
0
        d_loss = d_loss_real + d_loss_fake
        d_optimizer.zero_grad()
        d_loss.backward()
        d_optimizer.step()

        z = Variable(torch.randn(num_img, z_dimension)).cuda()
        fake_img = G(z)
        output = D(fake_img)
        g_loss = criterion(output, real_label)

        g_optimizer.zero_grad()
        g_loss.backward()
        g_optimizer.step()

        if (i + 1) % 100 == 0:
            print(
                "Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f}, D_real: {:.6f}, D_fake: {:.6f}"
                .format(epoch, num_epoch, d_loss.data.item(),
                        g_loss.data.item(), real_scores.data.mean(),
                        fake_scores.data.mean()))
    if epoch == 0:
        real_images = to_img(real_img.cpu().data)
        save_image(real_images, "./result/real_images.png")

    fake_images = to_img(fake_img.cpu().data)
    save_image(fake_images, "./result/fake_images-{}.png".format(epoch + 1))

torch.save(G.state_dict(), './model/generator.pth')
torch.save(D.state_dict(), "./model/discriminator.pth")
Example #4
0
            loss.backward()
            optimizer.step()

            train_loss += loss.data.item()
            count += 1

        # ===================log========================
        train_loss /= count
        if epoch % show_every == 0:

            val = val_loss(model, test_loader, hidden_size, train=True)

            print('epoch [{}/{}], loss:{:.4f}, val:{:.4f}, train_loss:{:.4f}'.
                  format(epoch + 1, num_epochs, loss.data.item(),
                         val.data.item(), train_loss))
            pic = to_img(output.cpu().data)
            show(pic[0][0])

    torch.save(model.state_dict(), teacher_fname)

else:
    # load teacher model
    checkpoint = torch.load(teacher_fname)
    model.load_state_dict(checkpoint)
"""
------- Sample 2D latent code -------
"""

model.eval()
N = 10  # number of images per size
range_ = 2  # range of exploration
Example #5
0
def train_sdae(batch_size, learning_rate, num_epochs, model_class, dataset_key,
               noise_type, zero_frac, gaussian_stdev, sp_frac, restore_path,
               save_path, log_freq, olshausen_path, olshausen_step_size,
               weight_decay, loss_type, emph_wt_a, emph_wt_b,
               vae_reconstruction_loss_type, cub_folder, learned_noise_wt,
               nt_restore_prefix, nt_save_prefix):
    # set up log folders
    if not os.path.exists('./01_original'):
        os.makedirs('./01_original')
    if not os.path.exists('./02_noisy'):
        os.makedirs('./02_noisy')
    if not os.path.exists('./03_output'):
        os.makedirs('./03_output')
    if not os.path.exists('./04_filters'):
        os.makedirs('./04_filters')
    if not os.path.exists('./05_stdev'):
        os.makedirs('./05_stdev')

    # set up model and criterion
    model = init_model(model_class, restore_path, restore_required=False)
    if isinstance(model, modules.SVAE):
        criterion = init_loss(
            'vae', reconstruction_loss_type=vae_reconstruction_loss_type)
    else:
        criterion = init_loss(loss_type)

    if len(learned_noise_wt) < model.num_blocks:
        len_diff = model.num_blocks - len(learned_noise_wt)
        learned_noise_wt.extend(learned_noise_wt[-1:] * len_diff)

    # load data
    data_loader, sample_c, sample_h, sample_w, data_minval, data_maxval = init_data_loader(
        dataset_key, True, batch_size, olshausen_path, olshausen_step_size,
        cub_folder)
    original_size = sample_c * sample_h * sample_w

    # training loop
    affected = None
    warning_displayed = False
    original, noisy, output = None, None, None
    for ae_idx in range(model.num_blocks):

        stdev = None
        nt_loss = None
        nt_optimizer = None
        noise_transformer = None
        if learned_noise_wt[ae_idx] > 0:
            noise_transformer = modules.NoiseTransformer(original_size)
            if torch.cuda.is_available():
                noise_transformer = noise_transformer.cuda()
            if nt_restore_prefix is not None:
                nt_restore_path = '%s_%d.pth' % (nt_restore_prefix, ae_idx)
                if os.path.exists(nt_restore_path):
                    noise_transformer.load_state_dict(
                        torch.load(nt_restore_path))
                    print('restored noise transformer from %s' %
                          nt_restore_path)
                else:
                    print('warning: checkpoint %s not found, skipping...' %
                          nt_restore_path)
            nt_optimizer = torch.optim.Adam(noise_transformer.parameters(),
                                            lr=learning_rate,
                                            weight_decay=weight_decay)

        # train one block at a time
        print('--------------------')
        print('training block %d/%d' % (ae_idx + 1, model.num_blocks))
        print('--------------------')
        model_optimizer = torch.optim.Adam(model.get_block_parameters(ae_idx),
                                           lr=learning_rate,
                                           weight_decay=weight_decay)

        for epoch in range(num_epochs):
            mean_loss, total_num_examples = 0, 0
            for batch_idx, data in enumerate(data_loader):
                original, _ = data
                original = original.float()
                if not model.is_convolutional:
                    original = original.view(original.size(0), -1)
                if torch.cuda.is_available():
                    original = original.cuda()
                original = model.encode(original)
                if isinstance(model, modules.SVAE):
                    original = original[
                        1]  # (sampled latent vector, mean, log_var)
                original = original.detach()

                # apply noise
                if learned_noise_wt[ae_idx] > 0:
                    stdev = noise_transformer.compute_stdev(original)
                    noisy = noise_transformer.apply_noise(original, stdev)
                else:
                    if noise_type == 'mn':
                        noisy, affected = zero_mask(original, zero_frac)
                    elif noise_type == 'gs':
                        noisy, affected = add_gaussian(original,
                                                       gaussian_stdev)
                    elif noise_type == 'sp':
                        noisy, affected = salt_and_pepper(
                            original, sp_frac, data_minval, data_maxval)
                    else:
                        if not warning_displayed:
                            print('unrecognized noise type: %r' %
                                  (noise_type, ))
                            print('using clean image as input')
                            warning_displayed = True
                        noisy = original
                    noisy = noisy.detach()
                    if torch.cuda.is_available():
                        noisy = noisy.cuda()

                # =============== forward ===============
                if isinstance(model, modules.SVAE):
                    output, mean, log_var = model(noisy, ae_idx)
                    loss = criterion(output, original, mean, log_var)
                    batch_size_ = original.size(
                        0)  # might be undersized last batch
                    total_num_examples += batch_size_
                    # assumes `loss` is sum for batch
                    mean_loss += (loss -
                                  mean_loss * batch_size_) / total_num_examples
                else:
                    output = model(noisy, ae_idx)
                    if (emph_wt_a != 1
                            or emph_wt_b != 1) and noise_type != 'gs':
                        # emphasize corrupted dimensions in the loss
                        loss = emph_wt_a * criterion(output[affected], original[affected]) + \
                               emph_wt_b * criterion(output[1 - affected], original[1 - affected])
                    else:
                        loss = criterion(output, original)
                    mean_loss += (loss - mean_loss) / (
                        batch_idx + 1)  # assumes `loss` is mean for batch

                if learned_noise_wt[ae_idx] > 0:
                    # encourage large standard deviations
                    nt_loss = loss - learned_noise_wt[ae_idx] * torch.mean(
                        stdev)

                # =============== backward ==============
                if learned_noise_wt[ae_idx] > 0:
                    nt_optimizer.zero_grad()
                    nt_loss.backward(retain_graph=True)
                    nt_optimizer.step()

                model_optimizer.zero_grad()
                loss.backward()
                model_optimizer.step()

            # =================== log ===================
            print('epoch {}/{}, loss={:.6f}'.format(epoch + 1, num_epochs,
                                                    mean_loss.item()))
            if epoch % log_freq == 0 or epoch == num_epochs - 1:
                # save images
                if ae_idx == 0:
                    to_save = [
                        (to_img(original.data.cpu()), './01_original',
                         'original'),
                        (to_img(noisy.data.cpu()), './02_noisy', 'noisy'),
                        (to_img(output.data.cpu()), './03_output', 'output'),
                        (to_img(model.get_first_layer_weights(as_tensor=True)),
                         './04_filters', 'filters'),
                    ]
                    for img, folder, desc in to_save:
                        save_image_wrapper(
                            img,
                            os.path.join(folder,
                                         '{}_{}.png'.format(desc, epoch + 1)))

                # save learned stdev
                if learned_noise_wt[ae_idx] > 0:
                    stdev_path = os.path.join(
                        './05_stdev',
                        'stdev_{}_{}.txt'.format(ae_idx, epoch + 1))
                    np.savetxt(stdev_path,
                               stdev.data.cpu().numpy(),
                               fmt='%.18f')
                    print('[o] saved stdev to %s' % stdev_path)

                # save model(s)
                torch.save(model.state_dict(), save_path)
                print('[o] saved model to %s' % save_path)
                if learned_noise_wt[ae_idx] > 0 and nt_save_prefix is not None:
                    nt_save_path = '%s_%d.pth' % (nt_save_prefix, ae_idx)
                    torch.save(noise_transformer.state_dict(), nt_save_path)
                    print('[o] saved lvl-%d noise transformer to %s' %
                          (ae_idx, nt_save_path))
        model.num_trained_blocks += 1
        original_size = model.get_enc_out_features(ae_idx)

    plot_first_layer_weights(model)
Example #6
0
            recon, mu, log_std = vae(inputs)
            loss = vae.loss_function(recon, inputs, mu, log_std)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            i += 1

            if batch_id % 100 == 0:
                print("Epoch[{}/{}], Batch[{}/{}], batch_loss:{:.6f}".format(
                    epoch+1, epochs, batch_id+1, len(data_loader), loss.item()))

        print("======>epoch:{},\t epoch_average_batch_loss:{:.6f}============".format(epoch+1, train_loss/i), "\n")

        # save imgs
        if epoch % 10 == 0:
            imgs = utils.to_img(recon.detach())
            path = "./img/vae/epoch{}.png".format(epoch+1)
            torchvision.utils.save_image(imgs, path, nrow=10)
            print("save:", path, "\n")

    torchvision.utils.save_image(img, "./img/vae/raw.png", nrow=10)
    print("save raw image:./img/vae/raw/png", "\n")

    # save val model
    utils.save_model(vae, "./model_weights/vae/vae_weights.pth")


Example #7
0
                img.size(0),
                -1)  # (batch_size, channel*width*height) -> (128, 784)
            img = img.cuda()
            # ===================forward=====================
            output = model(img)  # (128, 784)
            loss = criterion(output, img)
            # ===================backward====================
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        # ===================log========================
        print('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, num_epochs,
                                                  loss.item()))
        if epoch % 10 == 0:

            pic = to_img(img.cpu().data)
            save_image(pic, f'{OUTPUT_PATH}/input_image_{epoch}.png')

            pic = to_img(output.cpu().data)
            save_image(pic, f'{OUTPUT_PATH}/output_image_{epoch}.png')

            pic = to_img(model.decode(model.encode(img)).cpu().data)
            save_image(pic, f'{OUTPUT_PATH}/encode_decode_image_{epoch}.png')

            tsne_plot(X=img.cpu().numpy(),
                      y=label.numpy(),
                      filename=f'{OUTPUT_PATH}/tsne_input_{epoch}.html')
            tsne_plot(X=output.cpu().data.numpy(),
                      y=label.numpy(),
                      filename=f'{OUTPUT_PATH}/tsne_output_{epoch}.html')
Example #8
0
                noisy = noisy.cuda()

            # =============== forward ===============
            output, mean, log_var = model(noisy)
            loss = criterion(output, original, mean, log_var)
            batch_size_ = original.size(0)  # might be undersized last batch
            total_num_examples += batch_size_
            # assumes `loss` is sum for batch
            mean_loss += (loss - mean_loss * batch_size_) / total_num_examples

            # =============== backward ==============
            model_optimizer.zero_grad()
            loss.backward()
            model_optimizer.step()

        # =================== log ===================
        print('epoch {}/{}, loss={:.6f}'.format(epoch + 1, num_epochs, mean_loss.item()))
        if epoch % log_freq == 0 or epoch == num_epochs - 1:
            # save images
            to_save = [
                (to_img(original.data.cpu()), './01_original', 'original'),
                (to_img(noisy.data.cpu()), './02_noisy', 'noisy'),
                (to_img(output.data.cpu()), './03_output', 'output'),
            ]
            for img, folder, desc in to_save:
                save_image_wrapper(img, os.path.join(folder, '{}_{}.png'.format(desc, epoch + 1)))

            # save model(s)
            torch.save(model.state_dict(), save_path)
            print('[o] saved model to %s' % save_path)
Example #9
0
for data in train_loader:
    img, y = data
    img = img.view(img.size(0), -1)
    img = img.cuda()
    y = y.cuda()
    # ===================forward=====================
    #output = model.decoder(Z)
    #output = model(img)
    z = student_model.encoder(img)
    output = student_model.decoder(z)

    z2 = teacher_model.encoder(img)

    #print(z[0],z2[0])

    pic = to_img(output.cpu().data)
    show(pic[0][0])
    #print( y[0])
    break
"""# Finetune student with Jacobian"""

# initialize optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(student_model.parameters(),
                             lr=params.lr,
                             weight_decay=params.wd)

lambda_z = params.lambda_z
lambda_jacobian = params.lambda_jacobian
lambda_xcov = params.lambda_xcov