import pandas as pd from utils import train_evaluate N_ROWS = 10000 TRAIN_PATH = '/mnt/ml-team/minerva/open-solutions/santander/data/train.csv' MODEL_PARAMS = { 'boosting': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_threads': 12, 'learning_rate': 0.3, } data = pd.read_csv(TRAIN_PATH, nrows=N_ROWS) X = data.drop(['ID_code', 'target'], axis=1) y = data['target'] score = train_evaluate(X, y, MODEL_PARAMS) print('Validation AUC: {}'.format(score))
def objective(params): all_params = {**params, **STATIC_PARAMS} return -1.0 * train_evaluate(X, y, all_params)