def __init__(self, batch_size, n_ins, 
                 hidden_layers_sizes, n_outs, 
                 corruption_levels, rng, pretrain_lr, finetune_lr):
        # Just to make sure those are not modified somewhere else afterwards
        hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes)
        corruption_levels = copy.deepcopy(corruption_levels)

        update_locals(self, locals())      
 
        self.layers             = []
        self.pretrain_functions = []
        self.params             = []
        # MODIF: added this so we also get the b_primes
        # (not used for finetuning... still using ".params")
        self.all_params         = []
        self.n_layers           = len(hidden_layers_sizes)
        self.logistic_params    = []

        print "Creating SdA with params:"
        print "batch_size", batch_size
        print "hidden_layers_sizes", hidden_layers_sizes
        print "corruption_levels", corruption_levels
        print "n_ins", n_ins
        print "n_outs", n_outs
        print "pretrain_lr", pretrain_lr
        print "finetune_lr", finetune_lr
        print "----"

        if len(hidden_layers_sizes) < 1 :
            raiseException (' You must have at least one hidden layer ')


        # allocate symbolic variables for the data
        #index   = T.lscalar()    # index to a [mini]batch 
        self.x  = T.matrix('x')  # the data is presented as rasterized images
        self.y  = T.ivector('y') # the labels are presented as 1D vector of 
                                 # [int] labels
        self.finetune_lr = T.fscalar('finetune_lr') #To get a dynamic finetune learning rate
        self.pretrain_lr = T.fscalar('pretrain_lr') #To get a dynamic pretrain learning rate

        for i in xrange( self.n_layers ):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of 
            # the layer below or the input size if we are on the first layer
            if i == 0 :
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i-1]

            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer
            if i == 0 : 
                layer_input = self.x
            else:
                layer_input = self.layers[-1].output
            #We have to choose between sigmoidal layer or tanh layer !

##            layer = SigmoidalLayer(rng, layer_input, input_size, 
##                                   hidden_layers_sizes[i] )
                                
            layer = TanhLayer(rng, layer_input, input_size, 
                                   hidden_layers_sizes[i] )
            # add the layer to the 
            self.layers += [layer]
            self.params += layer.params
        
            # Construct a denoising autoencoder that shared weights with this
            # layer
            dA_layer = dA(input_size, hidden_layers_sizes[i], \
                          corruption_level = corruption_levels[0],\
                          input = layer_input, \
                          shared_W = layer.W, shared_b = layer.b)

            self.all_params += dA_layer.params
        
            # Construct a function that trains this dA
            # compute gradients of layer parameters
            gparams = T.grad(dA_layer.cost, dA_layer.params)
            # compute the list of updates
            updates = {}
            for param, gparam in zip(dA_layer.params, gparams):
                updates[param] = param - gparam * self.pretrain_lr
            
            # create a function that trains the dA
            update_fn = theano.function([self.x, self.pretrain_lr], dA_layer.cost, \
                  updates = updates)#,
            #     givens = { 
            #         self.x : ensemble})
            # collect this function into a list
            #update_fn = theano.function([index], dA_layer.cost, \
            #      updates = updates,
            #      givens = { 
            #         self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider})
            # collect this function into a list
            self.pretrain_functions += [update_fn]

        
        # We now need to add a logistic layer on top of the SDA
        self.logLayer = LogisticRegression(\
                         input = self.layers[-1].output,\
                         n_in = hidden_layers_sizes[-1], n_out = n_outs)

        self.params += self.logLayer.params
        self.all_params += self.logLayer.params
        # construct a function that implements one step of finetunining

        # compute the cost, defined as the negative log likelihood 
        cost = self.logLayer.negative_log_likelihood(self.y)
        # compute the gradients with respect to the model parameters
        gparams = T.grad(cost, self.params)
        # compute list of updates
        updates = {}
        for param,gparam in zip(self.params, gparams):
            updates[param] = param - gparam*self.finetune_lr
            
        self.finetune = theano.function([self.x,self.y,self.finetune_lr], cost, 
                updates = updates)#,

        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y

        self.errors = self.logLayer.errors(self.y)
        
        
        #STRUCTURE FOR THE FINETUNING OF THE LOGISTIC REGRESSION ON THE TOP WITH
        #ALL HIDDEN LAYERS AS INPUT
        
        all_h=[]
        for i in xrange(self.n_layers):
            all_h.append(self.layers[i].output)
        self.all_hidden=T.concatenate(all_h,axis=1)


        self.logLayer2 = LogisticRegression(\
                         input = self.all_hidden,\
                         n_in = sum(hidden_layers_sizes), n_out = n_outs)
                         #n_in=hidden_layers_sizes[0],n_out=n_outs)

        #self.logistic_params+= self.logLayer2.params
        # construct a function that implements one step of finetunining
        
        self.logistic_params+=self.logLayer2.params
        # compute the cost, defined as the negative log likelihood 
        cost2 = self.logLayer2.negative_log_likelihood(self.y)
        # compute the gradients with respect to the model parameters
        gparams2 = T.grad(cost2, self.logistic_params)

        # compute list of updates
        updates2 = {}
        for param,gparam in zip(self.logistic_params, gparams2):
            updates2[param] = param - gparam*finetune_lr
   
        self.finetune2 = theano.function([self.x,self.y], cost2, 
                updates = updates2)

        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y

        self.errors2 = self.logLayer2.errors(self.y)
    def __init__(self, train_set_x, train_set_y, batch_size, n_ins, 
                 hidden_layers_sizes, n_outs, 
                 corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0):
        # Just to make sure those are not modified somewhere else afterwards
        hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes)
        corruption_levels = copy.deepcopy(corruption_levels)

        update_locals(self, locals())      
 
        self.layers             = []
        self.pretrain_functions = []
        self.params             = []
        # MODIF: added this so we also get the b_primes
        # (not used for finetuning... still using ".params")
        self.all_params         = []
        self.n_layers           = len(hidden_layers_sizes)

        print "Creating SdA with params:"
        print "batch_size", batch_size
        print "hidden_layers_sizes", hidden_layers_sizes
        print "corruption_levels", corruption_levels
        print "n_ins", n_ins
        print "n_outs", n_outs
        print "pretrain_lr", pretrain_lr
        print "finetune_lr", finetune_lr
        print "input_divider", input_divider
        print "----"

        self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX))

        if len(hidden_layers_sizes) < 1 :
            raiseException (' You must have at least one hidden layer ')


        # allocate symbolic variables for the data
        index   = T.lscalar()    # index to a [mini]batch 
        self.x  = T.matrix('x')  # the data is presented as rasterized images
        self.y  = T.ivector('y') # the labels are presented as 1D vector of 
                                 # [int] labels

        for i in xrange( self.n_layers ):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of 
            # the layer below or the input size if we are on the first layer
            if i == 0 :
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i-1]

            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer
            if i == 0 : 
                layer_input = self.x
            else:
                layer_input = self.layers[-1].output

            layer = SigmoidalLayer(rng, layer_input, input_size, 
                                   hidden_layers_sizes[i] )
            # add the layer to the 
            self.layers += [layer]
            self.params += layer.params
        
            # Construct a denoising autoencoder that shared weights with this
            # layer
            dA_layer = dA(input_size, hidden_layers_sizes[i], \
                          corruption_level = corruption_levels[0],\
                          input = layer_input, \
                          shared_W = layer.W, shared_b = layer.b)

            self.all_params += dA_layer.params
        
            # Construct a function that trains this dA
            # compute gradients of layer parameters
            gparams = T.grad(dA_layer.cost, dA_layer.params)
            # compute the list of updates
            updates = {}
            for param, gparam in zip(dA_layer.params, gparams):
                updates[param] = param - gparam * pretrain_lr
            
            # create a function that trains the dA
            update_fn = theano.function([index], dA_layer.cost, \
                  updates = updates,
                  givens = { 
                     self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider})
            # collect this function into a list
            self.pretrain_functions += [update_fn]

        
        # We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(\
                         input = self.layers[-1].output,\
                         n_in = hidden_layers_sizes[-1], n_out = n_outs)

        self.params += self.logLayer.params
        self.all_params += self.logLayer.params
        # construct a function that implements one step of finetunining

        # compute the cost, defined as the negative log likelihood 
        cost = self.logLayer.negative_log_likelihood(self.y)
        # compute the gradients with respect to the model parameters
        gparams = T.grad(cost, self.params)
        # compute list of updates
        updates = {}
        for param,gparam in zip(self.params, gparams):
            updates[param] = param - gparam*finetune_lr
            
        self.finetune = theano.function([index], cost, 
                updates = updates,
                givens = {
                  self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider,
                  self.y : train_set_y[index*batch_size:(index+1)*batch_size]} )

        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y

        self.errors = self.logLayer.errors(self.y)