Example #1
0
def main(args):

    (image, cnts, pixelsPerMetric) = mark_countor(args['image'])

    for cnt in cnts:
        # ignore the contour if the area is small(noise)
        if cv2.contourArea(cnt) < Config.AREA_THRESHOLD:
            continue

        visual(image, cnt, pixelsPerMetric, args['width'])
Example #2
0
def text_detect_CRAFT(img,
                      craft_config,
                      CRAFT_MODEL,
                      sortbb=True,
                      visual_img=False):
    '''
    args:
        img: image
        craft_config: config of craft
        CRAFT_MODEL: craft model
        sort_bb: whether or not sort bounding box
        visual_image: whether or no not visual image
    return:
        bboxes: bbox of text
        polys: polygon of text
        score_text: confidence score
    '''
    # img = loadImage(image_path)
    bboxes, polys, score_text = craft_text_detect(img, craft_config,
                                                  CRAFT_MODEL)
    if sortbb:
        bboxes = sort_bb(bboxes)
    if visual_img:
        img = visual(img, polys)

    return bboxes, polys, score_text
Example #3
0
def visualization(sess, model, data_loader, filename):
    saver = tf.train.Saver(max_to_keep=1)
    ckpt = tf.train.get_checkpoint_state(flags.ckpt_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print(" [*] loading parameters success !!!")
    else:
        print(" [!] loading parameters failed  ...")
        return
    # user,item,label, utexts, itexts, text= data_loader.sample_point()
    user, item, label, utexts, itexts, text = data_loader.find_a_user()

    utexts = utexts.astype(int)
    itexts = itexts.astype(int)

    feed_dict = {
        model.u_input: user,
        model.i_input: item,
        model.label: label,
        model.utext: utexts,
        model.itext: itexts,
        model.text: text,
        model.keep_prob: 1.0
    }
    res = sess.run([
        model.word_user_alpha, model.word_item_alpha, model.doc_user_alpha,
        model.doc_item_alpha
    ],
                   feed_dict=feed_dict)

    print(utexts.dtype)
    u_texts = data_loader.vec_texts[utexts]
    i_texts = data_loader.vec_texts[itexts]

    res[2] = np.array(res[2]).transpose(1, 0, 2)
    res[3] = np.array(res[3]).transpose(1, 0, 2)

    for i in range(len(user)):
        uit = [user[i], item[i], label[i]]
        print(uit)
        res_trans = []
        for r in res:
            res_trans.append(r[i])
        visual(res_trans, uit, data_loader, utexts[i], itexts[i], u_texts[i],
               i_texts[i], filename)
Example #4
0
def cluster_image(img, colorspace, clusters, func, name):
    if colorspace is not None:
        img = cv2.cvtColor(img, colorspace)
    points = utils.image_to_points(img)

    labels = func(points, clusters)
    res, mask = utils.visual(points, labels, img.shape, name, colorspace)

    return res, labels, mask
Example #5
0
def text_detect_CRAFT(image_path,
                      craft_config,
                      net_craft,
                      sortbb=True,
                      visual_img=True):
    img = loadImage(image_path)
    bboxes, polys, score_text = craft_text_detect(img, craft_config, net_craft)

    if sortbb:
        polys = sorting_bounding_box(polys)
    if visual_img:
        img = visual(img, polys)

    return img, bboxes, polys, score_text
Download weigth của craft trên drive về bỏ vào thư mục libs/CRAFT/models
Chạy file này, thay link ảnh đầu vào, đầu ra của file này sẽ trả về danh sách xmin, ymin, xmax, ymax của các bounding box
đã được sắp xếp theo thứ tự từ trái qua phải, từ trên xuống dưới
'''


def loadImage(img_file):
    img = cv2.imread(img_file)  # RGB order
    if img.shape[0] == 2: img = img[0]
    if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
    if img.shape[2] == 4: img = img[:, :, :3]
    img = np.array(img)

    return img


# setup config
cfg = get_config()
cfg.merge_from_file('configs/craft.yaml')
craft_config = cfg.CRAFT

# run craft
net = CRAFT()
img = loadImage('data/test.jpg')
print('--------craft processing----------')
bboxes, polys, score_text = craft_text_detect(img, craft_config, net)
polys = sorting_bounding_box(polys)
# hàm lưu ảnh kết quả xem chơi
visual(img, polys)
print('--------craft done  ----------')
Example #7
0
    def __call__(self, image, targets, input_dim):
        boxes = targets[:, :4].copy()
        labels = targets[:, 4].copy()
        if targets.shape[1] > 5:
            mixup = True
            ratios = targets[:, -1].copy()
            ratios_o = targets[:, -1].copy()
        else:
            mixup = False
            ratios = None
            ratios_o = None
        lshape = 6 if mixup else 5
        if len(boxes) == 0:
            targets = np.zeros((self.max_labels, lshape), dtype=np.float32)
            image = preproc_for_test(image, input_dim, self.means, self.std)
            image = np.ascontiguousarray(image, dtype=np.float32)
            return torch.from_numpy(image), torch.from_numpy(targets)

        image_o = image.copy()
        targets_o = targets.copy()
        height_o, width_o, _ = image_o.shape
        boxes_o = targets_o[:, :4]
        labels_o = targets_o[:, 4]
        b_x_o = (boxes_o[:, 2] + boxes_o[:, 0]) * 0.5
        b_y_o = (boxes_o[:, 3] + boxes_o[:, 1]) * 0.5
        b_w_o = (boxes_o[:, 2] - boxes_o[:, 0]) * 1.0
        b_h_o = (boxes_o[:, 3] - boxes_o[:, 1]) * 1.0
        boxes_o[:, 0] = b_x_o
        boxes_o[:, 1] = b_y_o
        boxes_o[:, 2] = b_w_o
        boxes_o[:, 3] = b_h_o
        boxes_o[:, 0::2] /= width_o
        boxes_o[:, 1::2] /= height_o
        boxes_o[:, 0::2] *= input_dim[0]
        boxes_o[:, 1::2] *= input_dim[1]
        # labels_o = np.expand_dims(labels_o,1)
        # targets_o = np.hstack((boxes_o,labels_o))
        # targets_o = np.hstack((labels_o,boxes_o))

        image_t = _distort(image)
        if self.means is not None:
            fill = [m * 255 for m in self.means]
            fill = fill[::-1]
        else:
            fill = (127.5, 127.5, 127.5)
        image_t, boxes = _expand(image_t, boxes, fill, self.p)
        image_t, boxes, labels, ratios = _crop(image_t, boxes, labels, ratios)
        image_t, boxes = _mirror(image_t, boxes)

        if random.randrange(2):
            image_t, boxes, _ = _random_affine(image_t,
                                               boxes,
                                               borderValue=fill)

        height, width, _ = image_t.shape

        if DEBUG:
            image_t = np.ascontiguousarray(image_t, dtype=np.uint8)
            img = visual(image_t, boxes, labels)
            cv2.imshow("DEBUG", img)
            cv2.waitKey(0)

        image_t = preproc_for_test(image_t, input_dim, self.means, self.std)
        boxes = boxes.copy()
        b_x = (boxes[:, 2] + boxes[:, 0]) * 0.5
        b_y = (boxes[:, 3] + boxes[:, 1]) * 0.5
        b_w = (boxes[:, 2] - boxes[:, 0]) * 1.0
        b_h = (boxes[:, 3] - boxes[:, 1]) * 1.0
        boxes[:, 0] = b_x
        boxes[:, 1] = b_y
        boxes[:, 2] = b_w
        boxes[:, 3] = b_h
        boxes[:, 0::2] /= width
        boxes[:, 1::2] /= height
        boxes[:, 0::2] *= input_dim[0]
        boxes[:, 1::2] *= input_dim[1]
        mask_b = np.minimum(boxes[:, 2], boxes[:, 3]) > 6
        # mask_b= (boxes[:,2]*boxes[:,3]) > 32**2
        # mask_b= (boxes[:,2]*boxes[:,3]) > 48**2
        boxes_t = boxes[mask_b]
        labels_t = labels[mask_b].copy()
        if mixup:
            ratios_t = ratios[mask_b].copy()
        """
        if len(boxes_t)==0:
            targets = np.zeros((self.max_labels,lshape),dtype=np.float32)
            image = preproc_for_test(image_o, input_dim, self.means, self.std)
            image = np.ascontiguousarray(image, dtype=np.float32)
            return torch.from_numpy(image), torch.from_numpy(targets)
        """
        # if len(boxes_t)==0 or random.random() > 0.97:
        if len(boxes_t) == 0:
            image_t = preproc_for_test(image_o, input_dim, self.means,
                                       self.std)
            boxes_t = boxes_o
            labels_t = labels_o
            ratios_t = ratios_o

        labels_t = np.expand_dims(labels_t, 1)
        if mixup:
            ratios_t = np.expand_dims(ratios_t, 1)
            targets_t = np.hstack((labels_t, boxes_t, ratios_t))
        else:
            targets_t = np.hstack((labels_t, boxes_t))
        padded_labels = np.zeros((self.max_labels, lshape))
        padded_labels[range(
            len(targets_t))[:self.max_labels]] = targets_t[:self.max_labels]
        padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32)
        image_t = np.ascontiguousarray(image_t, dtype=np.float32)

        return torch.from_numpy(image_t), torch.from_numpy(padded_labels)