def show_maps(): layer = model.h_conv data = Data(1) # print data._y.shape # print data._X.shape # layer = model.h_conv5 batch_size = 40 # image that will be used, taken from test_data/X.npy batch = data.next_batch(batch_size) # jump batch_size images batch = data.next_batch(batch_size) # use the first image of this batch feature_maps = sess.run(layer, feed_dict={ model.x: batch[0], model.y_: batch[1], model.keep_prob: 1.0 }) plotFeatureMaps(feature_maps)
loss = tf.reduce_mean(tf.square(tf.subtract( model.y_, model.y))) + tf.add_n([tf.nn.l2_loss(v) for v in train_vars]) * L2NormConst train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) sess.run(tf.global_variables_initializer()) # Training loop variables epochs = 100 batch_size = 50 num_samples = data.num_examples step_size = int(num_samples / batch_size) for epoch in range(epochs): for i in range(step_size): batch = data.next_batch(batch_size) train_step.run(feed_dict={ model.x: batch[0], model.y_: batch[1], model.keep_prob: 0.8 }) if i % 10 == 0: loss_value = loss.eval(feed_dict={ model.x: batch[0], model.y_: batch[1], model.keep_prob: 1.0 }) print("epoch: %d step: %d loss: %g" % (epoch, epoch * batch_size + i, loss_value))
sess.run(tf.global_variables_initializer()) # Training loop variables epochs = 30 batch_size = 64 num_train_samples = train_data.num_examples # train ~6500 test 520 num_train_batches = int(num_train_samples / batch_size) # train 130, test 11 step_size = int(num_train_samples / batch_size) # 11 train_loss_values = [] test_loss_values = [] for epoch in range(epochs): for i in range(num_train_batches): count = epoch * num_train_batches + i # batches seen train_batch = train_data.next_batch(batch_size) test_batch = test_data.next_batch(batch_size) train_step.run( feed_dict={ model.x: train_batch[0], model.y_: train_batch[1], model.keep_prob: 0.7 }) test_loss_value = test_loss.eval(feed_dict={ model.x: test_batch[0], model.y_: test_batch[1], model.keep_prob: 1.0 }) if count % 100 == 0: train_loss_value = loss.eval( feed_dict={