Example #1
0
    def __init__(self, image_size):

        self.generator_g = Generator().cuda()
        self.generator_f = Generator().cuda()
        self.discriminator_c = Discriminator(image_size,
                                             num_input_channels=3).cuda()
        self.discriminator_t = Discriminator(image_size,
                                             num_input_channels=1).cuda()

        self.content_criterion = ContentLoss().cuda()
        self.tv_criterion = TVLoss().cuda()
        self.color_criterion = nn.BCEWithLogitsLoss().cuda()
        self.texture_criterion = nn.BCEWithLogitsLoss().cuda()

        betas = (0.5, 0.999)
        self.g_optimizer = optim.Adam(lr=1e-4,
                                      params=self.generator_g.parameters(),
                                      betas=betas)
        self.f_optimizer = optim.Adam(lr=1e-4,
                                      params=self.generator_f.parameters(),
                                      betas=betas)
        self.c_optimizer = optim.Adam(lr=4e-4,
                                      params=self.discriminator_c.parameters(),
                                      betas=betas)
        self.t_optimizer = optim.Adam(lr=4e-4,
                                      params=self.discriminator_t.parameters(),
                                      betas=betas)

        self.blur = GaussianBlur().cuda()
        self.gray = Grayscale().cuda()
    def __init__(self, config):
        '''keypoint order = thumb, index, middle, ring, little'''

        self.root_dir = config['path']
        self.augment = (bool(config['augment'])
                        and (config['scope'] == 'train'))

        if config['scope'] == 'train':
            (self.samples,
             self.labels) = get_splitted_image_names(self.root_dir)['train']
        elif config['scope'] == 'val':
            (self.samples,
             self.labels) = get_splitted_image_names(self.root_dir)['val']
        else:
            print('Validation set is not available..')
            self.samples, self.labels3d = None, None

        self.bboxes = pd.read_csv(
            'dataset/dexter_labeling/bbox_dexter+object.csv')

        color_intrisics = np.array([[587.45209, 0, 325], [0, 600.67456, 249],
                                    [0, 0, 1]])

        color_extrisics = np.array([[0.9999, 0.0034, 0.0161, 19.0473],
                                    [-0.0033, 1.0000, -0.0079, -1.8514],
                                    [-0.0162, 0.0079, 0.9998, -4.7501]])

        self.M_color = np.matmul(color_intrisics, color_extrisics)

        self.image_size = 128

        if self.augment:
            self.transform_image = transforms.Compose([
                transforms.Resize((self.image_size, self.image_size)),
                transforms.ColorJitter(brightness=.25,
                                       contrast=.25,
                                       saturation=.25),
                TransformBlur(),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

        else:
            self.transform_image = transforms.Compose([
                transforms.Resize((self.image_size, self.image_size)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

        self.transform_heatmap = transforms.Compose(
            [GaussianBlur(), transforms.ToTensor()])

        print('Images in Dexter+Object dataset: {}. Augmentation: {}'.format(
            len(self.samples), self.augment))
Example #3
0
    def __init__(self, config):

        self.root_dir = config['path']
        self.augment = (bool(config['augment'])
                        and (config['scope'] == 'train'))
        #self.augment = True

        if config['scope'] == 'train':
            self.samples = get_splitted_image_names(self.root_dir)['train']
        elif config['scope'] == 'val':
            self.samples = get_splitted_image_names(self.root_dir)['val']
        else:
            self.samples = get_splitted_image_names(self.root_dir)['test']

        ##===================
        ##Used only for model valuation - images with objects and without objects
        self.with_objects = None
        if self.with_objects == True:
            self.samples = [
                x for x in self.samples if x.find('/withObject/') >= 0
            ]
        if self.with_objects == False:
            self.samples = [
                x for x in self.samples if x.find('/noObject/') >= 0
            ]
        ##===================

        self.image_size = 128

        if self.augment:
            self.transform_image = transforms.Compose([
                transforms.Resize((self.image_size, self.image_size)),
                transforms.ColorJitter(brightness=.25,
                                       contrast=.25,
                                       saturation=.25),
                TransformBlur(),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

        else:
            self.transform_image = transforms.Compose([
                transforms.Resize((self.image_size, self.image_size)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

        self.transform_heatmap = transforms.Compose(
            [GaussianBlur(), transforms.ToTensor()])

        print('Images in GANerated dataset: {}. Augmentation: {}'.format(
            len(self.samples), self.augment))
    def __init__(self, config):
        
        self.root_dir = config['path']
        self.augment = (bool(config['augment']) and (config['scope'] == 'train'))
        
        if config['scope'] == 'train':
            (self.samples, self.labels3d) = get_splitted_image_names(self.root_dir)['train']
        elif config['scope'] == 'val':
            (self.samples, self.labels3d) = get_splitted_image_names(self.root_dir)['val']
        else:
            print('Validation set is not available..')
            self.samples, self.labels3d = None, None
            
            
        self.image_size = 128

        self.intrinsic = np.array([[607.92271, 0, 314.78337],
                                   [0, 607.88192, 236.42484],
                                   [0, 0, 1]
                                  ])
        if self.augment:
            self.transform_image = transforms.Compose([
                               transforms.Resize((self.image_size, self.image_size)), 
                               transforms.ColorJitter(brightness=.25, contrast=.25, saturation=.25),
                               TransformBlur(),
                               transforms.ToTensor(),
                               transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                               ])
            
            
            self.transform_rotatate = TransformRotate(rotation_type='2d')
            
        else:
            self.transform_image = transforms.Compose([
                               transforms.Resize((self.image_size, self.image_size)), 
                               transforms.ToTensor(),
                               transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                               ])
            
        self.transform_heatmap = transforms.Compose([
                                    GaussianBlur(),
                                    transforms.ToTensor()
                                    ])
        
        
        
        
        
        print('Images in Stereo dataset: {}. Augmentation: {}'.format(len(self.samples),self.augment))
Example #5
0
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import argparse
from sklearn.datasets import load_breast_cancer
from torch.utils.data import DataLoader, TensorDataset, Dataset
import torchvision
import numpy as np
import torchvision.transforms as transforms
from utils import GaussianBlur

data_augment = transforms.Compose([
    transforms.ToPILImage(),
    transforms.RandomHorizontalFlip(),
    GaussianBlur(),
    transforms.ToTensor()
])


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.base = torchvision.models.densenet121(pretrained=False)
        self.encoder = nn.Sequential(*list(self.base.children())[:-1])
        self.linear = nn.Sequential(nn.Linear(1024, 512),
                                    nn.ReLU(inplace=True), nn.Linear(512, 4))

        self.avgpool = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):
def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    print('Model:', args.model)
    model = models.__dict__[args.model](pretrained=False)
    if args.model.startswith('res'):
        model.fc = torch.nn.Linear(in_features=2048,
                                   out_features=args.n_out,
                                   bias=True)
    else:
        model.classifier = torch.nn.Linear(in_features=1280,
                                           out_features=args.n_out,
                                           bias=True)

    # DataParallel will divide and allocate batch_size to all available GPUs
    model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)
    optimizer = torch.optim.Adam(model.parameters(),
                                 args.lr,
                                 weight_decay=args.weight_decay)
    cudnn.benchmark = True

    if args.resume:
        if os.path.isfile(args.resume):
            print(args.resume)
            checkpoint = torch.load(args.resume)
            model.load_state_dict(checkpoint['model_state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    savefile_name = args.model + '_augmentstrong_batch256_' + str(
        args.augmentation) + '_Y_5_288'

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    if args.augmentation:
        train_dataset = datasets.ImageFolder(
            args.data,
            transforms.Compose([
                transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
                transforms.RandomApply(
                    [transforms.ColorJitter(0.9, 0.9, 0.9, 0.5)], p=0.9),
                transforms.RandomGrayscale(p=0.2),
                transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(), normalize
            ]))
    else:
        train_dataset = datasets.ImageFolder(
            args.data, transforms.Compose([transforms.ToTensor(), normalize]))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=None)

    acc1_list = []

    for epoch in range(args.start_epoch, args.epochs):

        # train for one epoch
        acc1 = train(train_loader, model, criterion, optimizer, epoch, args)
        acc1_list.append(acc1)

        torch.save(
            {
                'acc1_list': acc1_list,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict()
            }, savefile_name + '_epoch_' + str(epoch) + '.tar')
Example #7
0
    def __init__(self, config):

        self.root_dir = config['path']
        self.root_dir_background = config['path_background']
        self.augment = (bool(config['augment'])
                        and (config['scope'] == 'train'))
        #self.augment = True

        if config['scope'] == 'train':
            self.samples = get_splitted_image_names(self.root_dir)['train']
            self.backgrounds = get_background_images(
                self.root_dir_background)['train']
        elif config['scope'] == 'val':
            self.samples = get_splitted_image_names(self.root_dir)['val']
            self.backgrounds = get_background_images(
                self.root_dir_background)['val']
        else:
            self.samples = get_splitted_image_names(self.root_dir)['test']
            self.backgrounds = get_background_images(
                self.root_dir_background)['test']

        ##===================
        ##Used only for model valuation - images with objects and without objects
        self.with_objects = None
        if self.with_objects == True:
            self.samples = [x for x in self.samples if x.find('_object') >= 0]
        if self.with_objects == False:
            self.samples = [
                x for x in self.samples if x.find('_noobject') >= 0
            ]
        ##===================

        self.image_size = 128

        if self.augment:
            self.transform_image = transforms.Compose([
                transforms.CenterCrop((480, 480)),
                transforms.Resize((self.image_size, self.image_size)),
                transforms.ColorJitter(brightness=.25,
                                       contrast=.25,
                                       saturation=.25),
                TransformBlur(),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

            self.transform_scale = TransformScale()
            self.transform_rotatate = TransformRotate()

        else:
            self.transform_image = transforms.Compose([
                transforms.CenterCrop((480, 480)),
                transforms.Resize((self.image_size, self.image_size)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

        self.transform_heatmap = transforms.Compose(
            [GaussianBlur(), transforms.ToTensor()])

        # projecting 3D coordintated onto color image plane
        self.color_intrisics_matrix = np.array([[617.173, 0, 315.453],
                                                [0, 617.173, 242.259],
                                                [0, 0, 1]])

        self.color_extrisics_matrix = np.array([[1, 0, 0, 24.7],
                                                [0, 1, 0, -0.0471401],
                                                [0, 0, 1, 3.72045]])

        print('Images in SynHands dataset: {}. Augmentation: {}'.format(
            len(self.samples), self.augment))
def conceptcombine(model_list, select_idx):

    n = 64
    labels = []

    for six in select_idx:
        label_ix = np.eye(10)[six]
        label_batch = np.tile(label_ix[None, :], (n, 1))
        label = torch.Tensor(label_batch).cuda()
        labels.append(label)

    im = torch.rand(n, 3, 32, 32).cuda()
    im_noise = torch.randn_like(im).detach()

    def get_color_distortion(s=1.0):
        # s is the strength of color distortion.
        color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s,
                                              0.4 * s)
        rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
        rnd_gray = transforms.RandomGrayscale(p=0.2)
        color_distort = transforms.Compose([rnd_color_jitter, rnd_gray])
        return color_distort

    color_transform = get_color_distortion()

    im_size = 32
    transform = transforms.Compose([
        transforms.RandomResizedCrop(im_size, scale=(0.02, 1.0)),
        transforms.RandomHorizontalFlip(), color_transform,
        GaussianBlur(kernel_size=5),
        transforms.ToTensor()
    ])

    # First get good initializations for sampling
    for i in range(10):
        for i in range(20):
            im_noise.normal_()
            im = im + 0.001 * im_noise
            # im.requires_grad = True
            im.requires_grad_(requires_grad=True)
            energy = 0

            for model, label in zip(model_list, labels):
                energy = model.forward(im, label) + energy

            # print("step: ", i, energy.mean())
            im_grad = torch.autograd.grad([energy.sum()], [im])[0]

            im = im - FLAGS.step_lr * im_grad
            im = im.detach()

            im = torch.clamp(im, 0, 1)

        im = im.detach().cpu().numpy().transpose((0, 2, 3, 1))
        im = (im * 255).astype(np.uint8)

        ims = []
        for i in range(im.shape[0]):
            im_i = np.array(transform(Image.fromarray(np.array(im[i]))))
            ims.append(im_i)

        im = torch.Tensor(np.array(ims)).cuda()

    # Then refine the images

    for i in range(FLAGS.num_steps):
        im_noise.normal_()
        im = im + 0.001 * im_noise
        # im.requires_grad = True
        im.requires_grad_(requires_grad=True)
        energy = 0

        for model, label in zip(model_list, labels):
            energy = model.forward(im, label) + energy

        print("step: ", i, energy.mean())
        im_grad = torch.autograd.grad([energy.sum()], [im])[0]

        im = im - FLAGS.step_lr * im_grad
        im = im.detach()

        im = torch.clamp(im, 0, 1)

    output = im.detach().cpu().numpy()
    output = output.transpose((0, 2, 3, 1))
    output = output.reshape((-1, 8, 32, 32, 3)).transpose(
        (0, 2, 1, 3, 4)).reshape((-1, 32 * 8, 3))
    imsave("debug.png", output)
def conceptcombineeval(model_list, select_idx):
    dataset = CelebAHQ()
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=64,
                                             shuffle=True,
                                             num_workers=4)

    n = 64
    labels = []

    for six in select_idx:
        label_ix = np.eye(2)[six]
        label_batch = np.tile(label_ix[None, :], (n, 1))
        label = torch.Tensor(label_batch).cuda()
        labels.append(None)

    def get_color_distortion(s=1.0):
        # s is the strength of color distortion.
        color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s,
                                              0.4 * s)
        rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
        rnd_gray = transforms.RandomGrayscale(p=0.2)
        color_distort = transforms.Compose([rnd_color_jitter, rnd_gray])
        return color_distort

    color_transform = get_color_distortion(0.5)

    im_size = 128
    transform = transforms.Compose([
        transforms.RandomResizedCrop(im_size, scale=(0.3, 1.0)),
        transforms.RandomHorizontalFlip(), color_transform,
        GaussianBlur(kernel_size=5),
        transforms.ToTensor()
    ])

    gt_ims = []
    fake_ims = []
    im = None

    for _, data, label in tqdm(dataloader):
        gt_ims.extend(list((data.numpy() * 255).astype(np.uint8)))

        if im is None:
            im = torch.rand(n, 3, 128, 128).cuda()

        im_noise = torch.randn_like(im).detach()
        # First get good initializations for sampling
        for i in range(20):
            for i in range(15):
                im_noise.normal_()
                im = im + 0.001 * im_noise
                # im.requires_grad = True
                im.requires_grad_(requires_grad=True)
                energy = 0

                for model, label in zip(model_list, labels):
                    energy = model.forward(im, None) + energy

                # print("step: ", i, energy.mean())
                im_grad = torch.autograd.grad([energy.sum()], [im])[0]

                im = im - FLAGS.step_lr * im_grad
                im = im.detach()

                im = torch.clamp(im, 0, 1)

            im = im.detach().cpu().numpy().transpose((0, 2, 3, 1))
            im = (im * 255).astype(np.uint8)

            ims = []
            for i in range(im.shape[0]):
                im_i = np.array(transform(Image.fromarray(np.array(im[i]))))
                ims.append(im_i)

            im = torch.Tensor(np.array(ims)).cuda()

        # Then refine the images

        for i in range(FLAGS.num_steps):
            im_noise.normal_()
            im = im + 0.001 * im_noise
            # im.requires_grad = True
            im.requires_grad_(requires_grad=True)
            energy = 0

            for model, label in zip(model_list, labels):
                energy = model.forward(im, None) + energy

            im_grad = torch.autograd.grad([energy.sum()], [im])[0]

            im = im - FLAGS.step_lr * im_grad
            im = im.detach()

            im = torch.clamp(im, 0, 1)

        im_cpu = im.detach().cpu()
        fake_ims.extend(
            list((im_cpu.numpy().transpose(
                (0, 2, 3, 1)) * 255).astype(np.uint8)))

        if len(gt_ims) > 10000:
            break

    get_fid_score(gt_ims, fake_ims)
    fake_ims = np.array(fake_ims)
    fake_ims_flat = fake_ims.reshape(fake_ims.shape[0], -1)
    std_im = np.std(fake_ims, axis=0).mean()
    print("standard deviation of image", std_im)
    import pdb
    pdb.set_trace()
    print("here")