def get_batch(self): idx_video = random.randint(0, self.video_list.__len__() - 1) idx_frame = random.randint(1, 100 - self.T_in) lr_dir = self.trainset_dir + '/' + self.video_list[idx_video] + '/lr_x' + str(self.upscale_factor) + '_BI' hr_dir = self.trainset_dir + '/' + self.video_list[idx_video] + '/hr' # read HR & LR frames L_frames = [] for i in range(self.T_in): L_frames.append(LoadImage(lr_dir + '/lr' + str(idx_frame + i) + '.bmp')) H_frames = LoadImage(hr_dir + '/hr' + str(idx_frame + self.T_in // 2) + '.bmp') L_frames = np.asarray(L_frames) # pad L_frame L_frames_padded = np.lib.pad(L_frames, pad_width=((self.T_in // 2, self.T_in // 2), (0, 0), (0, 0), (0, 0)), mode='constant') #H_frames = np.asarray(H_frames[np.newaxis,np.newaxis,:,:,:]) return L_frames, H_frames
def get_y(path): dir_frames = glob.glob(path + "*.png") dir_frames.sort() frames = [] for f in dir_frames: frames.append(LoadImage(f)) frames = np.asarray(frames) return frames
def get_x(path): dir_frames=glob.glob(path+"*.png") dir_frames.sort() frames=[] for f in dir_frames: frames.append(LoadImage(f)) frames = np.asarray(frames) # print(frames.shape) (20, 100, 115, 3) frames_padded = np.lib.pad(frames, pad_width=((T_in // 2, T_in // 2), (0, 0), (0, 0), (0, 0)), mode='constant') # print(frames_padded.shape) (26, 100, 115, 3) return frames,frames_padded
def detect(model, source, out, imgsz, conf_thres, iou_thres, names, colors=[(255, 30, 0), (50, 0, 255)], device=torch.device('cpu')): img, img0 = LoadImage(source, img_size=imgsz) # Run inference img, im0 = LoadImage(source, img_size=imgsz) img = torch.from_numpy(img).to(device) img = img.float() img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference with torch.no_grad(): pred = model(img)[0] # Apply NMS pred = non_max_suppression(pred, conf_thres, iou_thres) # Process detections det = pred[0] # detections if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class # Write results for *xyxy, conf, cls in det: label = '%s %.2f' % (names[int(cls)], conf) # if cls == 0: plot_fire(xyxy, im0, clas=cls, label=label, color=colors[int(cls)], line_thickness=2) # Save results (image with detections) cv2.imwrite(out, im0) return im0
#LoadParams(sess, [params_G], in_file='params_{}L_x{}.h5'.format(args.L, R)) if args.T == 'G': # Test using GT videos avg_psnrs = [] dir_inputs = glob.glob('./inputs/G/*') for v in dir_inputs: scene_name = v.split('/')[-1] os.mkdir('./results/{}L/G/{}/'.format(args.L, scene_name)) dir_frames = glob.glob(v + '/*.png') dir_frames.sort() frames = [] for f in dir_frames: frames.append(LoadImage(f)) frames = np.asarray(frames) frames_padded = np.lib.pad(frames, pad_width=((T_in // 2, T_in // 2), (0, 0), (0, 0), (0, 0)), mode='constant') frames_padded = np.lib.pad(frames_padded, pad_width=((0, 0), (8, 8), (8, 8), (0, 0)), mode='reflect') out_Hs = [] for i in range(frames.shape[0]): print('Scene {}: Frame {}/{} processing'.format( scene_name, i + 1, frames.shape[0])) in_H = frames_padded[i:i + T_in] # select T_in frames
randoutputpath = options.randoutputpath computnormalmasks = options.normal_masks # default parameters # pair saliency automatically computes smoothgrad squared smoothgradsq = False # turn off smoothgradsquared nsamples_sg = 50 # number of noisy samples to compute xsteps_ig = 50 # interpolation steps for integrated gradients stdev_spread_sg = 0.15 # std for smoothgrad noisy samples gradcam_three_dims = True # gradcam should be 3 channels # assemble a list of these images listfiles = tf.io.gfile.listdir(inputimgfolderpath) demo_batch = [] for fl in listfiles: demo_batch.append(LoadImage(inputimgfolderpath + fl, resize=True)) demo_batch = np.array(demo_batch) if logging: print(demo_batch.shape) layer_randomization_order = inception_block_names() # compute normal saliency masks. if computnormalmasks: # load of inception model inception_model = Inceptionv3_Wrapper(chkpointpath=chkpntpath, lblmetadatapath=labeldatapath) # specify necessary saliency setup functions. saliency_dict, n_selector = get_saliency_constructors( inception_model.graph,