model.load_weights(args.weights_path) print(model.summary()) image_path = args.image_path input_size = model.input_shape[1] seguir = True while seguir: try: # Load and process image im_array = IOProcessor().process_image(image_path, input_size) # Do the freaking prediction pred = model.predict(im_array)[0] # Filter by threshold pred = np.where(pred >= 0.5, 1, 0) # the threshold can be in argument # Convert binary values to classes classes = [] for i, p in enumerate(pred): if p == 1: classes.append(list(opts.CLASSES.keys())[i]) # Add classification information on the image and display it im = Image.open(image_path).convert("RGBA") draw_text(im, classes, show=True) except FileNotFoundError: logger.alert( "File not found. The provided image path is not correct, please try a new one" ) # Ask for input again! logger.alert("Provide a new .jpg image path, or say 'quit' to... quit") image_path = input() if image_path.strip().lower() == "quit": seguir = False
# Save everything in h5!! h5_name = "voc_classification_trainval_224.h5" h5_path = os.path.join(args.outputs_path, h5_name) with h5py.File(h5_path, "w") as file: file.create_dataset("features", data=features, dtype='float32') file.create_dataset("labels", data=labels, dtype='float32') logger.success("Created h5 file {} successfully".format(h5_name)) logger.log("Absolute path of h5 file:", os.path.abspath(h5_path)) #### Try to do that on next experiment #### # Update on datastore if it is not a windows platform if not sys.platform.startswith("win"): logger.alert("This is not a windows platform, we try to update our features and labels on a datastore") from azureml.core import Workspace, Dataset from azureml.data.datapath import DataPath # Get workspace ws = Workspace( subscription_id=args.subscription_id, resource_group=args.resource_group, workspace_name=args.workspace_name ) files = [ h5_path ] datastore = ws.get_default_datastore() datastore.upload_files( files=files,