def run(): pt = Preprocessor() tr = Trainer() X_train, y_train = pt.load_data() X_test, y_test = pt.load_data("mnist_test_data.npz") x1 = X_train.reshape((-1, 28, 28, 1)) x2 = X_test.reshape((-1, 28, 28, 1)) y1 = keras.utils.to_categorical(y_train, len(np.unique(y_train))) y2 = keras.utils.to_categorical(y_test, len(np.unique(y_test))) clf = tr.cnn(x1, y1, x2, y2) tr.save(clf, "cnn_mnist_keras.h5") return clf
def run(): pt = Preprocessor() tr = Trainer() ts = Tester() t0 = time.time() X_train, y_train = pt.load_data() X_test, y_test = pt.load_data("mnist_test_data.npz") X_train, y_train = make_shuffle(X_train, y_train) X_test, y_test = make_shuffle(X_test, y_test) X_train = X_train.reshape((-1, 1, 28, 28)) X_test = X_test.reshape((-1, 1, 28, 28)) print(time.time() - t0) t1 = time.time() clf = tr.net(X_train, y_train) print(time.time() - t1) acc = ts.get_acc(clf, X_test, y_test) #acc=97.8% return clf, acc