Example #1
0
def main():
    cuda = torch.cuda.is_available()

    anchor_transform = transforms.Compose([
        transforms.RandomAffine(degrees=90, translate=(0.25, 0.25)),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.CenterCrop(128),
        transforms.Resize(IMG_SIZE),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    train_transforms = transforms.Compose([
        transforms.Resize(IMG_SIZE),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    #  Let's use 12 while developing as it reduces the start time.
    dset_train = GeoTileDataset(TILE_FILE,
                                transform=train_transforms,
                                center_transform=anchor_transform)

    pd_files = dset_train.get_file_df()
    weights = pd_files.frequency
    train_sampler = WeightedRandomSampler(weights, len(dset_train))
    # Should numworkers be 1?
    kwargs = {'num_workers': 8, 'pin_memory': True} if cuda else {}
    online_train_loader = DataLoader(dset_train,
                                     batch_size=BATCH_SIZE,
                                     sampler=train_sampler,
                                     **kwargs)

    model = Loc2Vec()
    if cuda:
        model.cuda()

    loss_fn = OnlineTripletLoss(MARGIN, HardestNegativeTripletSelector(MARGIN),
                                SemihardNegativeTripletSelector(MARGIN),
                                RandomNegativeTripletSelector(MARGIN))

    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    scheduler = lr_scheduler.StepLR(optimizer, 16, gamma=0.1, last_epoch=-1)

    # Mixed precision training
    model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

    # if torch.cuda.device_count() > 1:
    #     print("Let's use", torch.cuda.device_count(), "GPUs!")
    #     model = nn.DataParallel(model)

    fit(online_train_loader, online_train_loader, model, loss_fn, optimizer,
        scheduler, N_EPOCHS, cuda, LOG_INTERVAL)
        trainLoader = torch.utils.data.DataLoader(dataset = trainDataset, batch_size=mb_size, shuffle=False, num_workers=1, sampler = sampler)

        n_sampE, IE_dim = X_trainE.shape

        h_dim = hdm
        Z_in = h_dim
        marg = mrg
        lrE = lre
        epoch = epch

        costtr = []
        auctr = []
        costts = []
        aucts = []

        triplet_selector = RandomNegativeTripletSelector(marg)
        triplet_selector2 = AllTripletSelector()

        class AEE(nn.Module):
            def __init__(self):
                super(AEE, self).__init__()
                self.EnE = torch.nn.Sequential(
                    nn.Linear(IE_dim, h_dim),
                    nn.BatchNorm1d(h_dim),
                    nn.ReLU(),
                    nn.Dropout())
            def forward(self, x):
                output = self.EnE(x)
                return output  

        class OnlineTriplet(nn.Module):
    train_dataset, batch_sampler=train_batch_sampler, **kwargs)
online_test_loader = torch.utils.data.DataLoader(
    test_dataset, batch_sampler=test_batch_sampler, **kwargs)

# Set up the network and training parameters
from networks import EmbeddingNet
from losses import OnlineTripletLoss
from utils import AllTripletSelector, HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector  # Strategies for selecting triplets within a minibatch
from metrics import AverageNonzeroTripletsMetric

margin = 1.
embedding_net = EmbeddingNet()
model = embedding_net
if cuda:
    model.cuda()
loss_fn = OnlineTripletLoss(margin, RandomNegativeTripletSelector(margin))
lr = 1e-3
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4)
scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1)
n_epochs = 20
log_interval = 50

fit(online_train_loader,
    online_test_loader,
    model,
    loss_fn,
    optimizer,
    scheduler,
    n_epochs,
    cuda,
    log_interval,
Example #4
0
def main():
    torch.manual_seed(args.seed)  #设置随机种子

    train_dataset = SpeakerTrainDataset()  #设置训练集读取
    n_classes = train_dataset.n_classes  #说话人数
    batch_sampler = BalancedBatchSampler(train_dataset.labels,
                                         train_dataset.count, 10, 10)
    print('Num of classes: {}'.format(n_classes))

    model = ResNet(layers=[1, 1, 1],
                   embedding_size=args.embedding_size,
                   n_classes=n_classes)
    model.to(device)
    if args.optimizer == 'sgd':  #优化器使用sgd
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    dampening=args.dampening,
                                    weight_decay=args.wd)
    elif args.optimizer == 'adagrad':  #优化器使用adagrad
        optimizer = torch.optim.Adagrad(model.parameters(),
                                        lr=args.lr,
                                        lr_decay=args.lr_decay,
                                        weight_decay=args.wd)
    else:  #优化器使用adam
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=args.lr,
                                     weight_decay=args.wd)
    selector = RandomNegativeTripletSelector(args.m)
    criterion = OnlineTripletLoss(args.m, selector)

    start = 1
    if args.resume:  #是否从之前保存的模型开始
        if os.path.isfile(args.resume):
            print('=> loading checkpoint {}'.format(args.resume))
            checkpoint = torch.load(args.resume)
            if args.start is not None:
                start = start
            else:
                start = checkpoint['epoch'] + 1
            if args.load_optimizer:
                optimizer.load_state_dict(checkpoint['optimizer'])
            model.load_state_dict(checkpoint['state_dict'])
        else:
            print('=> no checkpoint found at {}'.format(args.resume))

    train_loader = DataLoader(train_dataset,
                              batch_sampler=batch_sampler,
                              num_workers=8,
                              pin_memory=True)

    test_dataset = SpeakerTestDataset(transform=args.transform)
    test_loader = DataLoader(test_dataset,
                             batch_size=args.test_batch_size,
                             shuffle=False,
                             num_workers=8,
                             pin_memory=True)

    for epoch in range(start, args.epochs + 1):
        train(epoch, model, criterion, optimizer, train_loader)
        test(model, test_loader)  #测试
        task = pd.read_csv('task/task.csv',
                           header=None,
                           delimiter='[ ]',
                           engine='python')
        pred = pd.read_csv(args.final_dir + 'pred.csv', engine='python')
        y_true = np.array(task.iloc[:, 0])
        y_pred = np.array(pred.iloc[:, -1])
        eer, thresh = cal_eer(y_true, y_pred)
        print('\nEER      : {:.3%}'.format(eer))
        print('Threshold: {:.5f}'.format(thresh))
Example #5
0
def main():
    torch.manual_seed(seed)  # 设置随机种子

    train_dataset = SpeakerTrainDataset()  # 设置训练集读取
    n_classes = train_dataset.n_classes  # 说话人数
    batch_sampler = BalancedBatchSampler(train_dataset.labels,
                                         train_dataset.count, spks_per_batch,
                                         utts_per_spk)
    print('Num of classes: {}'.format(n_classes))

    encoder = Encoder(expansion, blocks, embedding_dim).to(device)

    if optimizer == 'sgd':  # 优化器使用sgd
        encoder_optimizer = optim.SGD(encoder.parameters(),
                                      lr=lr,
                                      momentum=momentum,
                                      weight_decay=weight_decay)
    elif optimizer == 'adagrad':  # 优化器使用adagrad
        encoder_optimizer = optim.Adagrad(encoder.parameters(),
                                          lr=lr,
                                          weight_decay=weight_decay)
    else:  # 优化器使用adam
        encoder_optimizer = optim.Adam(encoder.parameters(),
                                       lr=lr,
                                       weight_decay=weight_decay)

    selector = RandomNegativeTripletSelector(margin)

    triplet_criterion = OnlineTripletLoss(margin, selector).to(device)

    start = 1
    metric = AverageNonzeroTripletsMetric()

    if resume:  # 是否从之前保存的模型开始
        if os.path.isfile(os.path.join(final_dir, "net.pth")):
            print('=> loading checkpoint {}'.format(
                os.path.join(final_dir, "net.pth")))
            checkpoint = torch.load(os.path.join(final_dir, "net.pth"))
            start = checkpoint['epoch'] + 1
            if load_optimizer:
                encoder_optimizer.load_state_dict(
                    checkpoint['encoder_optimizer'])
            encoder.load_state_dict(checkpoint['encoder_state_dict'])
        else:
            print('=> no checkpoint found at {}'.format(
                os.path.join(final_dir, "net.pth")))

    train_loader = DataLoader(train_dataset,
                              batch_sampler=batch_sampler,
                              num_workers=8,
                              pin_memory=True)

    test_dataset = SpeakerTestDataset()
    test_loader = DataLoader(test_dataset,
                             batch_size=1,
                             shuffle=False,
                             num_workers=8,
                             pin_memory=True)

    for epoch in range(start, epochs + 1):
        fake_fbank = train(epoch, encoder, triplet_criterion,
                           encoder_optimizer, train_loader, metric)
        test(encoder, test_loader)  # 测试
        task = pd.read_csv(TRIAL_FILE,
                           header=None,
                           delimiter='[,]',
                           engine='python')
        pred = pd.read_csv(final_dir + prediction, engine='python')
        y_true = np.array(task.iloc[:, 0])
        y_pred = np.array(pred.iloc[:, -1])
        eer, thresh = cal_eer(y_true, y_pred)
        print('EER      : {:.3%}'.format(eer))
        print('Threshold: {:.5f}'.format(thresh))
        logger.log_value('eer', eer)
Example #6
0
    if cuda:
        model.cuda()
    if args.classify:
        loss_fn = torch.nn.CrossEntropyLoss()
    else:
        margin = args.margin
        if args.triplets == 'batch-hard':
            loss_fn = OnlineTripletLoss(margin,
                                        HardestNegativeTripletSelector(margin))
        if args.triplets == 'semi-hard':
            loss_fn = OnlineTripletLoss(
                margin, SemihardNegativeTripletSelector(margin))
        if args.triplets == 'random-negative':
            loss_fn = OnlineTripletLoss(margin,
                                        RandomNegativeTripletSelector(margin))
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           weight_decay=args.decay)
    scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1)
    n_epochs = args.epochs
    log_interval = args.log

    if args.checkpoint:
        checkpoint = torch.load('checkpoint.pth.tar')
        model.load_state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        epoch = checkpoint['epoch']
        print("Restarting training from checkpoint...")
        if args.classify:
Example #7
0
def main():
    torch.manual_seed(seed)  # 设置随机种子

    train_dataset = SpeakerTrainDataset()  # 设置训练集读取
    n_classes = train_dataset.n_classes  # 说话人数
    batch_sampler = BalancedBatchSampler(train_dataset.labels,
                                         train_dataset.count, spks_per_batch,
                                         utts_per_spk)
    print('Num of classes: {}'.format(n_classes))

    encoder = Encoder(expansion, blocks, embedding_dim).to(device)
    generator = Generator(expansion, blocks, embedding_dim, FEATURE_LEN,
                          latent_dim).to(device)
    discriminator = Discriminator(expansion, blocks, embedding_dim).to(device)
    classifier = Classifier(expansion, blocks, n_classes).to(device)

    if optimizer == 'sgd':  # 优化器使用sgd
        generator_optimizer = optim.SGD([{
            'params': generator.parameters()
        }, {
            'params': encoder.parameters()
        }, {
            'params': discriminator.parameters()
        }],
                                        lr=lr,
                                        momentum=momentum,
                                        weight_decay=weight_decay)
        discriminator_optimizer = optim.SGD(
            [{
                'params': discriminator.parameters()
            }, {
                'params': classifier.parameters()
            }],
            lr=lr,
            momentum=momentum,
            weight_decay=weight_decay)
    elif optimizer == 'adagrad':  # 优化器使用adagrad
        generator_optimizer = optim.Adagrad(
            [{
                'params': generator.parameters()
            }, {
                'params': encoder.parameters()
            }, {
                'params': discriminator.parameters()
            }],
            lr=lr,
            weight_decay=weight_decay)
        discriminator_optimizer = optim.Adagrad(
            [{
                'params': discriminator.parameters()
            }, {
                'params': classifier.parameters()
            }],
            lr=lr,
            weight_decay=weight_decay)
    else:  # 优化器使用adam
        generator_optimizer = optim.Adam([{
            'params': generator.parameters()
        }, {
            'params': encoder.parameters()
        }, {
            'params': discriminator.parameters()
        }],
                                         lr=lr,
                                         weight_decay=weight_decay)
        discriminator_optimizer = optim.Adam(
            [{
                'params': discriminator.parameters()
            }, {
                'params': classifier.parameters()
            }],
            lr=lr,
            weight_decay=weight_decay)

    gen_scheduler = lr_scheduler.StepLR(generator_optimizer,
                                        200,
                                        gamma=0.1,
                                        last_epoch=-1)
    dis_scheduler = lr_scheduler.StepLR(discriminator_optimizer,
                                        200,
                                        gamma=0.1,
                                        last_epoch=-1)
    selector = RandomNegativeTripletSelector(margin)

    triplet_criterion = OnlineTripletLoss(margin, selector).to(device)
    bce_criterion = nn.BCELoss().to(device)
    softmax_criterion = nn.CrossEntropyLoss().to(device)

    start = 1
    metric = AverageNonzeroTripletsMetric()

    if resume:  # 是否从之前保存的模型开始
        if os.path.isfile(os.path.join(final_dir, "net.pth")):
            print('=> loading checkpoint {}'.format(
                os.path.join(final_dir, "net.pth")))
            checkpoint = torch.load(os.path.join(final_dir, "net.pth"))
            start = checkpoint['epoch'] + 1
            if load_optimizer:
                generator_optimizer.load_state_dict(
                    checkpoint['generator_optimizer'])
                discriminator_optimizer.load_state_dict(
                    checkpoint['discriminator_optimizer'])
            generator.load_state_dict(checkpoint['generator_state_dict'])
            discriminator.load_state_dict(
                checkpoint['discriminator_state_dict'])
        else:
            print('=> no checkpoint found at {}'.format(
                os.path.join(final_dir, "net.pth")))

    train_loader = DataLoader(train_dataset,
                              batch_sampler=batch_sampler,
                              num_workers=8,
                              pin_memory=True)

    test_dataset = SpeakerTestDataset()
    test_loader = DataLoader(test_dataset,
                             batch_size=1,
                             shuffle=False,
                             num_workers=8,
                             pin_memory=True)

    for epoch in range(start, epochs + 1):
        real_data, fake_fbank = train(epoch, encoder, generator, discriminator,
                                      classifier, triplet_criterion,
                                      bce_criterion, softmax_criterion,
                                      generator_optimizer,
                                      discriminator_optimizer, train_loader,
                                      metric)
        save_image(torch.Tensor(random.sample(real_data.tolist(), 4)),
                   'real_fbank/{}.png'.format(epoch),
                   nrow=2,
                   normalize=True)
        save_image(torch.Tensor(random.sample(fake_fbank.tolist(), 4)),
                   'fake_fbank/{}.png'.format(epoch),
                   nrow=2,
                   normalize=True)
        test(encoder, test_loader)  # 测试
        gen_scheduler.step()
        dis_scheduler.step()
        task = pd.read_csv(TRIAL_FILE,
                           header=None,
                           delimiter='[,]',
                           engine='python')
        pred = pd.read_csv(final_dir + prediction, engine='python')
        y_true = np.array(task.iloc[:, 0])
        y_pred = np.array(pred.iloc[:, -1])
        eer, thresh = cal_eer(y_true, y_pred)
        logger.log_value('eer', eer, epoch)
        print('EER      : {:.3%}'.format(eer))
        print('Threshold: {:.5f}'.format(thresh))
Example #8
0
def main():
    args = get_args()
    logdir = 'log/{}-emb{}-{}layers-{}resblk-lr{}-wd{}-maxlen{}-alpha10-margin{}'\
             '{}class-{}sample-{}selector'\
             .format(args.name, 
                     args.embedding_size,
                     args.layers,
                     args.resblk,
                     args.lr, 
                     args.wd, 
                     args.maxlen,
                     args.margin,
                     args.n_classes,
                     args.n_samples,
                     args.selection)
    if not os.path.exists(logdir):
        os.makedirs(logdir)

    resblock = []
    for i in range(args.layers):
        resblock.append(args.resblk)

    if args.train:
        logger = Logger(logdir)
        if not os.path.exists(args.trainfeature):
            os.mkdir(args.trainfeature)
            extractFeature(args.training-dataset, args.trainfeature)
        trainset = DeepSpkDataset(args.trainfeature, args.maxlen)
        pre_loader = DataLoader(trainset, batch_size = 128, shuffle = True, num_workers = 8)
        train_batch_sampler = BalancedBatchSampler(trainset.train_labels, 
                                                   n_classes = args.n_classes, 
                                                   n_samples = args.n_samples)
        kwargs = {'num_workers' : 1, 'pin_memory' : True}
        online_train_loader = torch.utils.data.DataLoader(trainset, 
                                                          batch_sampler=train_batch_sampler,
                                                          **kwargs) 
        margin = args.margin
        
        embedding_net = EmbeddingNet(resblock,  
                                     embedding_size = args.embedding_size,
                                     layers = args.layers)
        model = DeepSpeaker(embedding_net, trainset.get_num_class())
        device = torch.device('cuda:0')
        model.to(device) # 要在初始化optimizer之前把model转换到GPU上,这样初始化optimizer的时候也是在GPU上
        optimizer = optim.SGD(model.embedding_net.parameters(), 
                              lr = args.lr, 
                              momentum = 0.99,
                              weight_decay = args.wd)
        start_epoch = 0
        if args.resume:
            if os.path.isfile(args.resume):
                print('=> loading checkpoint {}'.format(args.resume))
                checkpoint = torch.load(args.resume)
                start_epoch = checkpoint['epoch']
                model.embedding_net.load_state_dict(checkpoint['state_dict'])
                optimizer.load_state_dict(checkpoint['optimizer'])
            else:
                print('=> no checkpoint found at {}'.format(args.resume))

        pretrain_epoch = args.pretrain_epoch
        
        if args.selection == 'randomhard':
            selector = RandomNegativeTripletSelector(margin)
        if args.selection == 'hardest':
            selector = HardestNegativeTripletSelector(margin)
        if args.selection == 'semihard':
            selector = SemihardNegativeTripletSelector(margin)
        if args.selection == 'all':
            print('warning : select all triplet may take very long time')
            selector = AllTripletSelector()

        loss_fn = OnlineTripletLoss(margin, selector)   
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size = args.lr_adjust_step,
                                        gamma = args.lr_decay,
                                        last_epoch = -1) 
        n_epochs = args.n_epochs
        log_interval = 50
        fit(online_train_loader,
            pre_loader,
            model,
            loss_fn,
            optimizer,
            scheduler,
            pretrain_epoch,
            n_epochs,
            True,
            device,
            log_interval,
            log_dir = logdir,
            eval_path = args.evalfeature,
            logger = logger,
            metrics = [AverageNonzeroTripletsMetric()],
            evaluatee = args.eval,
            start_epoch = start_epoch)
    else:
        if not os.path.exists(args.testfeature):
            os.mkdir(args.testfeature)
            extractFeature(args.test-dataset, args.testfeature)
        model = EmbeddingNet(resblock,  
                             embedding_size = args.embedding_size,
                             layers = args.layers)
        model.cpu()
        if args.model:
            if os.path.isfile(args.model):
                print('=> loading checkpoint {}'.format(args.model))
                checkpoint = torch.load(args.model)
                model.load_state_dict(checkpoint['state_dict'])
            else:
                print('=> no checkpoint found at {}'.format(args.model))
        thres = np.loadtxt(logdir + '/thres.txt')
        acc = np.loadtxt(logdir + '/acc.txt')
        idx = np.argmax(acc)
        best_thres = thres[idx]
        predict(model, args.testfeature, best_thres)
Example #9
0
def main(args):
    if os.path.exists('models') is False:
        os.makedirs('models')

    # img_list, base_path, item_dict = read_data(args.dataset, args.bbox)
    img_list, base_path, item_dict = read_data("DeepFashion2", bbox_gt=False)
    model_save_path = args.model_path  # 'models/siames_triplet_df2.pth'

    # writer = SummaryWriter('runs/fashion_mnist_experiment_1')
    model = ResNetbasedNet()
    if os.path.exists(model_save_path):
        model.load_state_dict(torch.load(model_save_path))

    cuda = torch.cuda.is_available()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if cuda:
        if torch.cuda.device_count() > 1:
            model = nn.DataParallel(model)
        model.to(device)

    kwargs = {'num_workers': 8, 'pin_memory': True} if cuda else {}

    if not args.phase:
        train_dataset = DeepFashionDataset(img_list['train'], root=base_path)
        train_batch_sampler = BalancedBatchSampler(train_dataset.labels,
                                                   train_dataset.source,
                                                   n_classes=32,
                                                   n_samples=4)
        online_train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_sampler=train_batch_sampler, **kwargs)

        test_dataset = DeepFashionDataset(img_list['validation'],
                                          root=base_path)
        test_batch_sampler = BalancedBatchSampler(test_dataset.labels,
                                                  test_dataset.source,
                                                  n_classes=32,
                                                  n_samples=4)
        online_test_loader = torch.utils.data.DataLoader(
            test_dataset, batch_sampler=test_batch_sampler, **kwargs)

        margin = 1.
        loss_fn = OnlineTripletLoss(margin,
                                    RandomNegativeTripletSelector(margin))
        lr = 1e-3
        optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4)
        scheduler = lr_scheduler.StepLR(optimizer, 5, gamma=0.1, last_epoch=-1)
        n_epochs = 20
        log_interval = 200

        fit(online_train_loader,
            online_test_loader,
            model,
            loss_fn,
            optimizer,
            scheduler,
            n_epochs,
            cuda,
            log_interval,
            model_save_path,
            metrics=[AverageNonzeroTripletsMetric()])

    else:
        model.eval()
        gallery_dataset = DeepFashionDataset(img_list['validation'],
                                             root=base_path)

        acc, query_cnt = get_topK_acc(gallery_dataset, item_dict['validation'],
                                      model, cuda,
                                      open('retrieval_result.txt', 'a'), 100)
        np.savetxt('TopK_accuracy.txt',
                   np.concatenate((acc, np.asarray([query_cnt]))),
                   fmt='%1.5f',
                   delimiter=',')