Example #1
0
import torch.nn as nn
from utils import Pairloader, SiameseNet, _tqdm as tqdm
from torch.utils.data import DataLoader
import os

parser = argparse.ArgumentParser(description='Train SiameseNet')
parser.add_argument('--save_location', '-sl', type=str, default='model/{}-epoch-{}.pth')
parser.add_argument('--epochs', '-e', type=int, default=50)
parser.add_argument('--save_every', '-se', type=int, default=5)
parser.add_argument('--device', '-d', type=str, default=None)
args = parser.parse_args()

if not args.device:
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = SiameseNet(mode='train', device=args.device)
datagen = DataLoader(Pairloader(split='train'), shuffle=True)
bce_loss = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)

for epoch in range(args.epochs):
    epoch_loss = 0.0

    with tqdm(datagen) as t:
        for i, batch in enumerate(t):

            t.set_description('EPOCH: %i'%(epoch+1))

            data1, data2, label = batch[0][0].to(device=args.device), batch[0][1].to(device=args.device), batch[1].to(device=args.device)

            optimizer.zero_grad()
Example #2
0
import os

parser = argparse.ArgumentParser(description='Train SiameseNet')
parser.add_argument('--save_location',
                    '-sl',
                    type=str,
                    default='model/{}-epoch-{}.pth')
parser.add_argument('--epochs', '-e', type=int, default=50)
parser.add_argument('--save_every', '-se', type=int, default=5)
parser.add_argument('--device', '-d', type=str, default=None)
args = parser.parse_args()

if not args.device:
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = SiameseNet(mode='train', device=args.device)
datagen = DataLoader(Pairloader(split='train'), shuffle=True)
bce_loss = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)

for epoch in range(args.epochs):
    model.train()
    epoch_loss = 0.0

    with tqdm(datagen) as t:
        for i, batch in enumerate(t):

            t.set_description('EPOCH: %i' % (epoch + 1))

            img1, img2, label = batch[0][0].to(
                device=args.device), batch[0][1].to(
Example #3
0

refs = {
    'up':
    preprocess(librosa.load(os.path.join(args.ref, 'up.wav'), sr=RATE)[0]),
    'down':
    preprocess(librosa.load(os.path.join(args.ref, 'down.wav'), sr=RATE)[0]),
    'sil':
    preprocess(librosa.load(os.path.join(args.ref, 'sil.wav'), sr=RATE)[0]),
    'quit':
    preprocess(librosa.load(os.path.join(args.ref, 'quit.wav'), sr=RATE)[0])
}

print('Loading model')
model = SiameseNet(mode='inference',
                   weights_path=args.model_location.format(args.epoch),
                   refs_dict=refs,
                   device=args.device)

previous = np.zeros((CHUNK, 1))

audio = pyaudio.PyAudio()

stream = audio.open(format=FORMAT,
                    channels=CHANNELS,
                    rate=RATE,
                    input=True,
                    frames_per_buffer=CHUNK)

print("Recording...")

while True:
parser = argparse.ArgumentParser(description='Live test SiameseNet')
parser.add_argument('--model_location',
                    '-l',
                    type=str,
                    default='model/{}-epoch-{}.pth')
parser.add_argument('--epoch', '-e', type=int, default=None)
parser.add_argument('--device', '-d', type=str, default=None)
parser.add_argument('--ref', '-r', type=str, default='references/')
parser.add_argument('-t', '--target', type=str, default='data/test.wav')
args = parser.parse_args()

if not args.device:
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'

print('Loading model')
model = SiameseNet().to(device=args.device)
model.load_state_dict(
    torch.load(args.model_location.format('model', args.epoch),
               map_location=args.device))
model.train()

RATE = 16000


def preprocess(audio=None):
    audio_trimmed = librosa.effects.trim(audio, top_db=7)[0]
    audio_center = librosa.util.pad_center(audio_trimmed[:4000], 4000)
    audio_mfcc = librosa.feature.mfcc(y=audio_center, sr=RATE)
    audio_tensor = torch.tensor(audio_mfcc[None, None])

    return audio_tensor.to(device=args.device)
Example #5
0
import torch
import argparse
from utils import Pairloader, SiameseNet
from torch.utils.data import DataLoader

parser = argparse.ArgumentParser(description='Validate SiameseNet')
parser.add_argument('--model_location', '-l', type=str, default='model/model-epoch-{}.pth')
parser.add_argument('--epoch', '-e', type=int, default=None)
parser.add_argument('--device','-d', type=str, default=None)
args = parser.parse_args()

if not args.device:
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = SiameseNet(mode='validate', weights_path=args.model_location.format(args.epoch), device=args.device)

datagen = DataLoader(Pairloader(split='valid'))

for i, batch in enumerate(datagen):

    data1, data2, file_names = batch[0][0].to(device=args.device), batch[0][1].to(device=args.device), batch[1]

    output = model(data1, data2)

    print(file_names[0], " and ", file_names[1], ":- ", output.item())