def predict_one_label(self, data): self.query_num += 1 data = data.squeeze() pred_real, pred_pro = Sincnet.sentence_test( self.model, torch.from_numpy(data).float().cuda()) return pred_real
if flag==False: if a.split('-')[0]==str(start): flag=True else: continue if MODE=="Librispeech": real_name=a.split('-')[2] target_name = t.split('-')[2] elif MODE=="TIMIT": real_name = a.split('-')[-1].split('.')[0].lower() target_name = t.split('-')[-1].split('.')[0].lower() # read audio real_data, fs = sf.read(os.path.join(attackdir, a)) target_data, fs = sf.read(os.path.join(targetdir, t)) # test is ok pid, _ = Sincnet.sentence_test(model,torch.from_numpy(target_data).float().cuda()) target_index = speaker_label[target_name] if pid != target_index: print("error") continue # set file name print("now attack audio:", a) dl = a.split('-')[0] # local and attenutation attack save_pfn=os.path.join(abs_path,save_dir,"test-{}.txt".format(dl)) save_info_n=os.path.join(abs_path,save_dir,"info-{}.txt".format(dl)) laatk=LOCAL_ATT_HSJA_ATTACK.LAATTACK(os.path.join(attackdir, a), os.path.join(targetdir, t), save_p_fname=save_pfn, save_info_fname=save_info_n, MODE=MODE, dct_field=0.65) o2_audio, preturb,query_num,interval=laatk.targeted_attack() # save audio
def predict_one_label(model, audio): qq, _ = Sincnet.sentence_test(model, audio.float().cuda()) return qq
def show_max(wav): qq, _ = Sincnet.sentence_test(model, wav.float().cuda()) print(qq)
def predict_label(self,data): pred_real, pred_pro = Sincnet.sentence_test(self.model, torch.from_numpy(data).float().cuda()) return pred_real