def get_clustering(data_to_cluster, cluster_model_type, cluster_model_params): sw = Stopwatch() sw.start() if cluster_model_type == 'KMEANS': cluster_model = MiniBatchKMeans(**cluster_model_params) elif cluster_model_type == 'DBSCAN': cluster_model = DBSCAN_w_prediction(**cluster_model_params) cluster_model.fit(data_to_cluster) cluster_model.X = data_to_cluster sw.stop() logging.debug('Descriptors clustered into %d clusters.' % cluster_model.n_clusters) return cluster_model
def run(self): self.iteration = 0 self.best_unit = None self.evaluations = 0 self.elapsed_time = 0 stopwatch = Stopwatch() stop_cond = self.params['stop_condition'] print('===> Initializing population!') stopwatch.start() self._initialize() best_unit = __get_best().copy() print('===> Done! ({})'.format(format_stopwatch(stopwatch))) print('===> Starting algorithm with population of {} units!'.format( len(self.population))) while not stop_cond.is_satisfied(self): self.iteration += 1 self._run_step() print('===> Done! ({})'.format(format_stopwatch(stopwatch))) print(stop_cond.report(self))
def run(self): iteration = 0 best_unit = None evaluations = 0 elapsed_time = 0 stopwatch = Stopwatch() stopwatch.start() print("===> Initializing population!") __initialize_population() best_unit = __get_best().clone() print_done_with_stopwatch(stopwatch) print("===> Starting algorithm with population of {} units!".format(len(self.population))) while not self.stop_condition.is_satisfied(iteration, best_unit, evaluations, elapsed_time): iteration += 1 if self.params['elitism']: # Save the queen. new_pop.append(__get_best().clone()) for i in range(self.params['elitism'] - (self.params['elitism'] ? 1 : 0)): parents = __select_parents(self.population)
# Optimizer optimizer = optim.SGD(net.parameters(), lr=LEARNING_RATE, momentum=MOMENTUM) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=LR_DECAY_EPOCHS, gamma=GAMMA) # Loss function criterion = Customized_Loss(beta=LOSS_BETA) # Time measuring stopwatch_train = Stopwatch() stopwatch_epoch = Stopwatch() # Training phase total_epoch_time = 0 stopwatch_train.start() for epoch in range(EPOCHS): net.log("[Epoch {}]".format(epoch + 1)) net.train() scheduler.step() training_losses = [] num_iters = 0 stopwatch_epoch.start() import itertools #for images, ps in itertools.islice(train_loader, 10): for images, ps in train_loader: ps = ps.to(device=device) images = images.to(device=device) # Predict the pose