if EXPERIMENT_MODE: for f in ['./viz/visualize.py', './dl/deepae.py', './utils/sampling.py', './utils/sampling.py']: %run f # -- swap with your own. data = np.load('data-wprime-qcd.npy') data = data[data['jet_pt'] > 200] dat = dat[(dat['jet_pt'] > 200) & (dat['jet_pt'] < 500)] data = dat[np.abs(dat['jet_eta']) < 2] # -- load and process daa X_ = np.array([x.ravel() for x in data['image']]).astype('float32') y_ = data['signal'].astype('float32') df = WeightedDataset(X_, y_) buf = df.sample(141417) n_train = 115000 X, y = buf[0][:n_train], buf[1][:n_train] X_val, y_val = buf[0][n_train:], buf[1][n_train:] tau21 = data['tau_21'][df._ix_buf] mass = data['jet_mass'][df._ix_buf] pt = data['jet_pt'][df._ix_buf] train_sample = df._ix_buf[:n_train] test_sample = df._ix_buf[n_train:]
# -- Experiment mode EXPERIMENT_MODE = False if EXPERIMENT_MODE: for f in ['./viz/visualize.py', './dl/deepae.py', './utils/sampling.py', './utils/sampling.py']: %run f # -- swap with your own. data = np.load('data-wprime-qcd.npy') data = data[data['jet_pt'] > 150] # -- load and process daa X_ = np.array([x.ravel() for x in data['image']]).astype('float32') y_ = data['signal'].astype('float32') df = WeightedDataset(X_, y_) buf = df.sample(300000) n_train = 260000 X, y = buf[0][:n_train], buf[1][:n_train] X_val, y_val = buf[0][n_train:], buf[1][n_train:] tau21 = data['tau_21'][df._ix_buf] mass = data['jet_mass'][df._ix_buf] pt = data['jet_pt'][df._ix_buf] train_sample = df._ix_buf[:n_train] test_sample = df._ix_buf[n_train:]