Example #1
0
def get_next_batch(batch_size=128):
    images = []
    to_images = []
    max_width_image = 0
    font_min_length = random.randint(10, 20)
    for i in range(batch_size):
        font_name = random.choice(AllFontNames)
        # font_length = random.randint(font_min_length-5, font_min_length+5)
        font_length = random.randint(3, 5)
        font_size = random.randint(image_height, 64)
        font_mode = random.choice([0, 1, 2, 4])
        font_hint = random.choice([0, 1, 2, 3, 4, 5])
        text = utils_font.get_random_text(CHARS, eng_world_list, font_length)
        image = utils_font.get_font_image_from_url(text,
                                                   font_name,
                                                   font_size,
                                                   fontmode=font_mode,
                                                   fonthint=font_hint)
        to_image = image.copy()
        image = utils_font.add_noise(image)
        image = utils_pil.convert_to_gray(image)
        rate = random.randint(8, 17) / font_size
        image = utils_pil.resize(image, rate)
        image = np.asarray(image)
        image = utils.resize(image, height=image_height)
        image = (255. - image) / 255.
        images.append(image)

        # to_image = utils_font.get_font_image_from_url(text, font_name ,image_height, fontmode = font_mode, fonthint = font_hint)
        to_image = utils_pil.convert_to_gray(to_image)
        to_image = np.asarray(to_image)
        to_image = utils.resize(to_image, height=image_height)
        to_image = utils.img2bwinv(to_image)
        to_image = to_image / 255.
        to_images.append(to_image)

        if image.shape[1] > max_width_image:
            max_width_image = image.shape[1]
        if to_image.shape[1] > max_width_image:
            max_width_image = to_image.shape[1]

    max_width_image = max_width_image + (POOL_SIZE -
                                         max_width_image % POOL_SIZE)
    inputs = np.zeros([batch_size, max_width_image, image_height])
    for i in range(len(images)):
        image_vec = utils.img2vec(images[i],
                                  height=image_height,
                                  width=max_width_image,
                                  flatten=False)
        inputs[i, :] = np.transpose(image_vec)

    labels = np.zeros([batch_size, max_width_image, image_height])
    for i in range(len(to_images)):
        image_vec = utils.img2vec(to_images[i],
                                  height=image_height,
                                  width=max_width_image,
                                  flatten=False)
        labels[i, :] = np.transpose(image_vec)
    return inputs, labels
Example #2
0
def get_next_batch_for_srgan(batch_size=128):
    inputs_images = []
    targets_images = []
    max_width_image = 0
    for i in range(batch_size):
        font_name = random.choice(AllFontNames)
        font_length = random.randint(3, 70)
        font_size = 36  #random.randint(image_height, 64)
        font_mode = random.choice([0, 1, 2, 4])
        font_hint = random.choice([0, 1, 2, 3, 4, 5])  #删除了2
        text = utils_font.get_random_text(CHARS, eng_world_list, font_length)
        image = utils_font.get_font_image_from_url(text, font_name, font_size,
                                                   font_mode, font_hint)
        image = utils_pil.resize_by_height(image, image_height)
        image = utils_pil.convert_to_gray(image)
        targets_image = image.copy()
        targets_image = np.asarray(targets_image)
        targets_image = (255. - targets_image) / 255.
        # targets_image = np.reshape(targets_image,[-1])
        # targets_image = np.pad(targets_image,(0, image_size*image_size-np.size(targets_image)),"constant")
        # targets_image = np.reshape(targets_image, [image_size,image_size])
        targets_images.append(targets_image)

        _h = random.randint(9, image_height // random.choice([1, 1.5, 2, 2.5]))
        image = utils_pil.resize_by_height(image, _h)
        image = utils_pil.resize_by_height(image, image_height,
                                           random.random() > 0.5)

        # image,_,_,_,_ = utils_pil.random_space(image)

        image = utils_font.add_noise(image)
        image = np.asarray(image)
        # image = utils.resize(image, height=image_height)
        image = image * random.uniform(0.3, 1)
        if random.random() > 0.5:
            image = (255. - image) / 255.
        else:
            image = image / 255.
        # image = np.reshape(image,[-1])
        # image = np.pad(image,(0, image_size*image_size-np.size(image)),"constant")
        # image = np.reshape(image, [image_size,image_size])
        inputs_images.append(image)

    inputs = np.zeros([batch_size, image_size, image_size])
    for i in range(batch_size):
        inputs[i, :] = utils.square_img(inputs_images[i],
                                        np.zeros([image_size, image_size]))

    targets = np.zeros([batch_size, image_size, image_size])
    for i in range(batch_size):
        targets[i, :] = utils.square_img(targets_images[i],
                                         np.zeros([image_size, image_size]))

    return inputs, targets
Example #3
0
def get_next_batch_for_srgan(batch_size=128):
    inputs_images  = []
    targets_images = []
    max_width_image = 0
    for i in range(batch_size):
        font_name = random.choice(AllFontNames)
        font_length = random.randint(4, 5)
        font_size = 36 #random.randint(image_height, 64)    
        font_mode = random.choice([0,1,2,4]) 
        font_hint = random.choice([0,1,2,3,4,5])     #删除了2
        text  = utils_font.get_random_text(CHARS, eng_world_list, font_length)
        image = utils_font.get_font_image_from_url(text, font_name, font_size, font_mode, font_hint)
        image = utils_pil.resize_by_height(image, image_height)
        image = utils_pil.convert_to_gray(image)
        targets_image = image.copy()

        _h =  random.randint(9, image_height // random.choice([1,1.5,2,2.5]))
        image = utils_pil.resize_by_height(image, _h)        
        image = utils_pil.resize_by_height(image, image_height, random.random()>0.5) 

        targets_image = np.asarray(targets_image)
        # targets_image = utils.resize(targets_image, height=image_height)
        # targets_image = utils_pil.convert_to_bw(targets_image)
        targets_images.append((255. - targets_image) / 255.)

        image = utils_font.add_noise(image)   
        image = np.asarray(image)
        # image = utils.resize(image, height=image_height)
        image = image * random.uniform(0.3, 1)
        if random.random()>0.5:
            image = (255. - image) / 255.
        else:
            image = image / 255.
        inputs_images.append(image)        

        if image.shape[1] > max_width_image: 
            max_width_image = image.shape[1]
        if targets_image.shape[1] > max_width_image: 
            max_width_image = targets_image.shape[1]      

    # max_width_image = max_width_image + (POOL_SIZE - max_width_image % POOL_SIZE)
    inputs = np.zeros([batch_size, max_width_image, image_height])
    for i in range(batch_size):
        image_vec = utils.img2vec(inputs_images[i], height=image_height, width=max_width_image, flatten=False)
        inputs[i,:] = np.transpose(image_vec)

    targets = np.zeros([batch_size, max_width_image, image_height])
    for i in range(batch_size):
        image_vec = utils.img2vec(targets_images[i], height=image_height, width=max_width_image, flatten=False)
        targets[i,:] = np.transpose(image_vec)

    return inputs, targets
Example #4
0
def getImage(CHARS, font_name, image_height, font_length, font_size,
             word_dict):
    text = utils_font.get_random_text(CHARS, word_dict, font_length)
    img = utils_font.get_font_image_from_url(text, font_name, font_size)
    img = utils_font.add_noise(img)
    img = utils_pil.convert_to_gray(img)

    w, h = img.size
    _h = random.randint(9, image_height)
    _w = round(w * _h / h)
    img = img.resize((_w, _h), Image.ANTIALIAS)
    img = np.asarray(img)
    #  img = utils.clearBackgroundColor(img)
    img = 1 - img / 255.
    img = utils.dropZeroEdges(img)

    filter = np.random.random(img.shape) - 0.9
    filter = np.maximum(filter, 0)
    img = img + filter * 5
    imin, imax = img.min(), img.max()
    img = (img - imin) / (imax - imin)

    img = utils.resize(img, image_height)
    return text, img
Example #5
0
def get_next_batch(batch_size=128):
    images = []
    to_images = []
    codes = []
    max_width_image = 0
    for i in range(batch_size):
        font_name = random.choice(AllFontNames)
        font_length = random.randint(25, 30)
        font_size = 36  #random.randint(image_height, 64)
        font_mode = random.choice([0, 1, 2, 4])
        font_hint = random.choice([0, 1, 2, 3, 4, 5])
        text = utils_font.get_random_text(CHARS, eng_world_list, font_length)
        # text = random.sample(CHARS, 12)
        # text = text+text
        # random.shuffle(text)
        # text = "".join(text).strip()
        codes.append([CHARS.index(char) for char in text])
        image = utils_font.get_font_image_from_url(text,
                                                   font_name,
                                                   font_size,
                                                   fontmode=font_mode,
                                                   fonthint=font_hint)
        image = utils_pil.resize_by_height(image, image_height)
        to_image = image.copy()
        image = utils_font.add_noise(image)
        image = utils_pil.convert_to_gray(image)
        _h = random.randint(9, image_height // random.choice([1, 1.5, 2, 2.5]))
        image = utils_pil.resize_by_height(image, _h, random.random() > 0.5)
        image = utils_pil.resize_by_height(image, image_height,
                                           random.random() > 0.5)
        image = np.asarray(image)
        image = utils.resize(image, height=image_height)
        image = (255. - image) / 255.
        images.append(image)

        # to_image = utils_font.get_font_image_from_url(text, font_name ,image_height, fontmode = font_mode, fonthint = font_hint)
        to_image = utils_pil.convert_to_gray(to_image)
        to_image = np.asarray(to_image)
        to_image = utils.resize(to_image, height=image_height)
        to_image = utils.img2bwinv(to_image)
        to_image = to_image / 255.
        to_images.append(to_image)

        if image.shape[1] > max_width_image:
            max_width_image = image.shape[1]
        if to_image.shape[1] > max_width_image:
            max_width_image = to_image.shape[1]

    max_width_image = max_width_image + (POOL_SIZE -
                                         max_width_image % POOL_SIZE)
    inputs = np.zeros([batch_size, max_width_image, image_height])
    for i in range(len(images)):
        image_vec = utils.img2vec(images[i],
                                  height=image_height,
                                  width=max_width_image,
                                  flatten=False)
        inputs[i, :] = np.transpose(image_vec)

    targets = np.zeros([batch_size, max_width_image, image_height])
    for i in range(len(to_images)):
        image_vec = utils.img2vec(to_images[i],
                                  height=image_height,
                                  width=max_width_image,
                                  flatten=False)
        targets[i, :] = np.transpose(image_vec)

    labels = [np.asarray(i) for i in codes]
    sparse_labels = utils.sparse_tuple_from(labels)
    seq_len = np.ones(batch_size) * (max_width_image *
                                     image_height) // (POOL_SIZE * POOL_SIZE)
    return inputs, targets, sparse_labels, seq_len
Example #6
0
def get_next_batch_for_res(batch_size=128,
                           add_noise=True,
                           _font_name=None,
                           _font_size=None,
                           _font_mode=None,
                           _font_hint=None):
    inputs_images = []
    codes = []
    max_width_image = 0
    info = []
    for i in range(batch_size):
        font_name = _font_name
        font_size = _font_size
        font_mode = _font_mode
        font_hint = _font_hint
        if font_name == None:
            font_name = random.choice(AllFontNames)
        if font_size == None:
            if random.random() > 0.5:
                font_size = random.randint(9, 49)
            else:
                font_size = random.randint(9, 15)
        if font_mode == None:
            font_mode = random.choice([0, 1, 2, 4])
        if font_hint == None:
            font_hint = random.choice([0, 1, 2, 3, 4, 5])

        while True:
            font_length = random.randint(5, 400)

            # text = random.sample(CHARS, font_length)
            # text = text+text+[" "," "]
            # random.shuffle(text)
            # text = "".join(text).strip()

            text = utils_font.get_random_text(CHARS, eng_world_list,
                                              font_length)
            image = utils_font.get_font_image_from_url(text, font_name,
                                                       font_size, font_mode,
                                                       font_hint)
            temp_image = utils_pil.resize_by_height(image, image_height)
            w, h = temp_image.size
            if w * h < image_size * image_size: break

        image = utils_pil.convert_to_gray(image)
        w, h = image.size
        if h > image_height:
            image = utils_pil.resize_by_height(image, image_height)

        if add_noise and random.random() > 0.5:
            _h = random.randint(9, image_height + 1)
            image = utils_pil.resize_by_height(image, _h)

        image = utils_pil.random_space2(image, image_height)

        if add_noise:
            image = utils_font.add_noise(image)

        image = np.asarray(image)
        # image = utils.resize(image, height=image_height)
        if add_noise:
            image = image * random.uniform(0.3, 1)

        if add_noise and random.random() > 0.5:
            image = image / 255.
        else:
            image = (255. - image) / 255.

        inputs_images.append(image)
        codes.append([CHARS.index(char) for char in text])

        info.append(
            [font_name,
             str(font_size),
             str(font_mode),
             str(font_hint)])

    inputs = np.zeros([batch_size, image_size, image_size])
    for i in range(batch_size):
        inputs[i, :] = utils.square_img(inputs_images[i],
                                        np.zeros([image_size, image_size]))

    labels = [np.asarray(i) for i in codes]
    sparse_labels = utils.sparse_tuple_from(labels)
    seq_len = np.ones(batch_size) * (image_size * image_size) // (POOL_SIZE *
                                                                  POOL_SIZE)
    return inputs, sparse_labels, seq_len, info