if daily_stock_quote: for k in DailyStockQuote.fields.keys(): if k in OptionEffect.fields: self.__set(k, daily_stock_quote.get(k)) def set(self, key, value): raise RuntimeError("Should not be used") def __set(self, key, value): if key not in OptionEffect.fields: raise KeyError(f"Invalid key={key}") self._values[key] = value if __name__ == '__main__': metadata_dir = setup_metadata_dir() setup_logger(__file__) logger.setLevel(logging.DEBUG) logging.getLogger("web_chrome_driver").setLevel(logging.DEBUG) # test from online reading with ChromeDriver() as browser: option_quote = read_daily_option_quote(browser, "AMD", "Call", 60.0, 20220121, use_barchart=True) stock_quote = read_stock_quote(browser, "AMD") option_effect = OptionEffect(daily_option_quote=option_quote, daily_stock_quote=stock_quote) print(json.dumps(option_effect.__dict__, indent=4))
# from scipy.misc import imresize # from tensorboardX import SummaryWriter # import warnings from sklearn.metrics import roc_auc_score from sklearn.metrics import average_precision_score import cv2 from utils_logging import setup_logger from models.__init__ import save_checkpoint, resume_checkpoint from parse_inputs import parse_inputs args = parse_inputs() logger = setup_logger(name='first_logger', log_dir='./logs/', log_file=args.log_file, log_format='%(asctime)s %(levelname)s %(message)s', verbose=True) def main(): # transform = _get_transform(args.input_resolution) # Prepare data print("Loading Data") batch_size = args.batch_size train_set = GazeDataset(args.train_dir, args.train_annotation, 'train') train_data_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=False,