Example #1
0
def test_cox_cc_runs(numpy):
    data = make_dataset(False).apply(lambda x: x.float()).to_numpy()
    if not numpy:
        data = data.to_tensor()
    net = tt.practical.MLPVanilla(data[0].shape[1], [4], 1, False, output_bias=False)
    model = CoxPH(net)
    fit_model(data, model)
    model.compute_baseline_hazards()
    assert_survs(data[0], model)
Example #2
0
def test_cox_time_runs(numpy):
    input, target = make_dataset(False).apply(lambda x: x.float()).to_numpy()
    labtrans = CoxTime.label_transform()
    target = labtrans.fit_transform(*target)
    data = tt.tuplefy(input, target)
    if not numpy:
        data = data.to_tensor()
    net = MLPVanillaCoxTime(data[0].shape[1], [4], False)
    model = CoxTime(net)
    fit_model(data, model)
    model.compute_baseline_hazards()
    assert_survs(data[0], model)
Example #3
0
def test_pc_hazard_runs(numpy, num_durations):
    data = make_dataset(True)
    input, (durations, events) = data
    durations += 1
    target = (durations, events)
    labtrans = PCHazard.label_transform(num_durations)
    target = labtrans.fit_transform(*target)
    data = tt.tuplefy(input, target)
    if not numpy:
        data = data.to_tensor()
    net = tt.practical.MLPVanilla(input.shape[1], [4], num_durations)
    model = PCHazard(net)
    fit_model(data, model)
    assert_survs(input, model)
    model.duration_index = labtrans.cuts
    assert_survs(input, model)
Example #4
0
def test_pmf_runs(numpy, num_durations):
    data = make_dataset(True)
    input, target = data
    labtrans = PMF.label_transform(num_durations)
    target = labtrans.fit_transform(*target)
    data = tt.tuplefy(input, target)
    if not numpy:
        data = data.to_tensor()
    net = tt.practical.MLPVanilla(input.shape[1], [4], labtrans.out_features)
    model = PMF(net)
    fit_model(data, model)
    assert_survs(input, model)
    model.duration_index = labtrans.cuts
    assert_survs(input, model)
    cdi = model.interpolate(3, 'const_pdf')
    assert_survs(input, cdi)