def evaluate(): # Evaluate the accuracy of the MNIST model on legitimate test examples accuracy = model_eval(sess, x, y, predictions, X_test, Y_test, args=eval_params) print('Test accuracy on legitimate test examples: %0.4f' % accuracy) # Accuracy of the model on Wasserstein adversarial examples # accuracy_adv_wass = model_eval(sess, x, y, predictions_adv_wrm, X_test, \ # Y_test, args=eval_params) # print('Test accuracy on Wasserstein examples: %0.4f' % accuracy_adv_wass) # Accuracy of the model on FGSM adversarial examples accuracy_adv_fgsm = model_eval(sess, x, y, preds_adv_fgsm, X_test, \ Y_test, args=eval_params) print('Test accuracy on fgsm examples: %0.4f' % accuracy_adv_fgsm) # Accuracy of the model on IFGM adversarial examples accuracy_adv_ifgm = model_eval(sess, x, y, preds_adv_ifgm, X_test, \ Y_test, args=eval_params) print('Test accuracy on ifgm examples: %0.4f' % accuracy_adv_ifgm)
def evaluate_adv(): # Accuracy of adversarially trained model on legitimate test inputs accuracy = model_eval(sess, x, y, predictions_adv, X_test, Y_test, args=eval_params) print('Test accuracy on legitimate test examples: %0.4f' % accuracy) # Accuracy of the adversarially trained model on Wasserstein adversarial examples accuracy_adv_wass = model_eval(sess, x, y, predictions_adv_adv_wrm, \ X_test, Y_test, args=eval_params) print('Test accuracy on Wasserstein examples: %0.4f\n' % accuracy_adv_wass)
def evaluate(): # Evaluate the accuracy of the MNIST model on legitimate test examples accuracy = model_eval(sess, x, y, predictions, X_test, Y_test, args=eval_params) print('Test accuracy on legitimate test examples: %0.4f' % accuracy) # Accuracy of the model on Wasserstein adversarial examples accuracy_adv_wass = model_eval(sess, x, y, predictions_adv_wrm, X_test, \ Y_test, args=eval_params) print('Test accuracy on Wasserstein examples: %0.4f\n' % accuracy_adv_wass)
def evaluate(): # Evaluate the accuracy of the MNIST model on legitimate test examples accuracy = model_eval(sess, x, y, predictions, X_test, Y_test, args=eval_params) print('Test accuracy on legitimate test examples: %0.4f' % accuracy) # Accuracy of the model on Wasserstein adversarial examples accuracy_adv_wass = model_eval(sess, x, y, predictions_adv_eval, X_test, Y_test, args=eval_params) print('Test accuracy on Wasserstein examples: %0.4f\n' % accuracy_adv_wass) f = open(file, 'a') f_writter = csv.writer(f) f_writter.writerow((accuracy, accuracy_adv_wass))